On the cost of solving augmented Lagrangian subproblems

At each iteration of the augmented Lagrangian algorithm, a nonlinear subproblem is being solved. The number of inner iterations (of some/any method) needed to obtain a solution of the subproblem, or even a suitable approximate stationary point, is in principle unknown. In this paper we show that to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2020-07, Vol.182 (1-2), p.37-55
Hauptverfasser: Fernández, Damián, Solodov, Mikhail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:At each iteration of the augmented Lagrangian algorithm, a nonlinear subproblem is being solved. The number of inner iterations (of some/any method) needed to obtain a solution of the subproblem, or even a suitable approximate stationary point, is in principle unknown. In this paper we show that to compute an approximate stationary point sufficient to guarantee local superlinear convergence of the augmented Lagrangian iterations, it is enough to solve two quadratic programming problems (or two linear systems in the equality-constrained case). In other words, two inner Newtonian iterations are sufficient. To the best of our knowledge, such results are not available even under the strongest assumptions (of second-order sufficiency, strict complementarity, and the linear independence constraint qualification). Our analysis is performed under second-order sufficiency only, which is the weakest assumption for obtaining local convergence and rate of convergence of outer iterations of the augmented Lagrangian algorithm. The structure of the quadratic problems in question is related to the stabilized sequential quadratic programming and to second-order corrections.
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-019-01384-1