Classical gravitational scattering at O(G3) from Feynman diagrams
A bstract We perform a Feynman diagram calculation of the two-loop scattering amplitude for gravitationally interacting massive particles in the classical limit. Conveniently, we are able to sidestep the most taxing diagrams by exploiting the test-particle limit in which the system is fully characte...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2020-06, Vol.2020 (6) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A
bstract
We perform a Feynman diagram calculation of the two-loop scattering amplitude for gravitationally interacting massive particles in the classical limit. Conveniently, we are able to sidestep the most taxing diagrams by exploiting the test-particle limit in which the system is fully characterized by a particle propagating in a Schwarzschild spacetime. We assume a general choice of graviton field basis and gauge fixing that contains as a subset the well-known deDonder gauge and its various cousins. As a highly nontrivial consistency check, all gauge parameters evaporate from the final answer. Moreover, our result exactly matches that of Bern et al. [39], here verified up to sixth post-Newtonian order while also reproducing the same unique velocity resummation at third post-Minkowksian order. |
---|---|
ISSN: | 1029-8479 |
DOI: | 10.1007/JHEP06(2020)144 |