Classical gravitational scattering at O(G3) from Feynman diagrams

A bstract We perform a Feynman diagram calculation of the two-loop scattering amplitude for gravitationally interacting massive particles in the classical limit. Conveniently, we are able to sidestep the most taxing diagrams by exploiting the test-particle limit in which the system is fully characte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2020-06, Vol.2020 (6)
Hauptverfasser: Cheung, Clifford, Solon, Mikhail P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We perform a Feynman diagram calculation of the two-loop scattering amplitude for gravitationally interacting massive particles in the classical limit. Conveniently, we are able to sidestep the most taxing diagrams by exploiting the test-particle limit in which the system is fully characterized by a particle propagating in a Schwarzschild spacetime. We assume a general choice of graviton field basis and gauge fixing that contains as a subset the well-known deDonder gauge and its various cousins. As a highly nontrivial consistency check, all gauge parameters evaporate from the final answer. Moreover, our result exactly matches that of Bern et al. [39], here verified up to sixth post-Newtonian order while also reproducing the same unique velocity resummation at third post-Minkowksian order.
ISSN:1029-8479
DOI:10.1007/JHEP06(2020)144