Matrix regularization for Riemann surfaces with magnetic fluxes
We consider the matrix regularization of fields on a Riemann surface which couple to gauge fields with a nonvanishing magnetic flux. We show that such fields are described as rectangular matrices in the matrix regularization. We construct the matrix regularization explicitly for the case of the sphe...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2020-05, Vol.101 (10), p.1, Article 106009 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the matrix regularization of fields on a Riemann surface which couple to gauge fields with a nonvanishing magnetic flux. We show that such fields are described as rectangular matrices in the matrix regularization. We construct the matrix regularization explicitly for the case of the sphere and torus based on the Berezin-Toeplitz quantization, and also discuss a possible generalization to cases with higher genera. We also discuss the matrix version of the Laplacian acting on the rectangular matrices. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.101.106009 |