Matrix regularization for Riemann surfaces with magnetic fluxes

We consider the matrix regularization of fields on a Riemann surface which couple to gauge fields with a nonvanishing magnetic flux. We show that such fields are described as rectangular matrices in the matrix regularization. We construct the matrix regularization explicitly for the case of the sphe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2020-05, Vol.101 (10), p.1, Article 106009
Hauptverfasser: Adachi, Hiroyuki, Ishiki, Goro, Matsumoto, Takaki, Saito, Kaishu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the matrix regularization of fields on a Riemann surface which couple to gauge fields with a nonvanishing magnetic flux. We show that such fields are described as rectangular matrices in the matrix regularization. We construct the matrix regularization explicitly for the case of the sphere and torus based on the Berezin-Toeplitz quantization, and also discuss a possible generalization to cases with higher genera. We also discuss the matrix version of the Laplacian acting on the rectangular matrices.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.101.106009