Wooden Truss Analysis, Preservation Strategies, and Digital Documentation through Parametric 3D Modeling and HBIM Workflow
The main focus of this paper is the most recent phase of a large research project that has studied several wooden roof structures in the area of Bologna, belonging to a set of important historical buildings, all dating back to the 16th and 18th centuries. In particular, the behavior of the wooden tr...
Gespeichert in:
Veröffentlicht in: | Sustainability 2020-06, Vol.12 (12), p.4975 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The main focus of this paper is the most recent phase of a large research project that has studied several wooden roof structures in the area of Bologna, belonging to a set of important historical buildings, all dating back to the 16th and 18th centuries. In particular, the behavior of the wooden trusses that support pitched roofs is analyzed, according to a methodological approach, based on generative algorithms that can help researchers and technicians to improve the comprehension of wooden structures’ behavior during their entire lifespan. While all the previous case studies concerned churches, this latest step extends the survey to the roofing system of the Municipal Theater of Bologna, which has a span of approximately 25 m. The core of the process concerns the automatic transformation of the point cloud into 3D models using parametric modeling tools, such as Grasshopper generative algorithms. Following this workflow, it is possible to speed up the creation of different truss models by changing only a few input parameters. This updating of the research protocol automatically creates a Building Information Modeling (BIM) model and a calculation model for the wooden trusses to perform a structural stress analysis by linking Grasshopper tools with Dynamo-Revit features. The procedure that has been developed from previous studies is still evolving and aims to speed up the modeling procedure and introduce new tools and methods for interpreting the functioning of these structural elements when surveyed through terrestrial laser scanning (TLS) devices. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su12124975 |