Geometry of canonical bases and mirror symmetry
A decorated surface S is an oriented surface with boundary and a finite, possibly empty, set of special points on the boundary, considered modulo isotopy. Let G be a split reductive group over Q . A pair ( G , S ) gives rise to a moduli space A G , S , closely related to the moduli space of G -local...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2015-11, Vol.202 (2), p.487-633 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A
decorated surface
S
is an oriented surface with boundary and a finite, possibly empty, set of
special
points on the boundary, considered modulo isotopy. Let
G
be a split reductive group over
Q
. A pair
(
G
,
S
)
gives rise to a moduli space
A
G
,
S
, closely related to the moduli space of
G
-local systems on
S
. It is equipped with a positive structure (Fock and Goncharov, Publ Math IHES 103:1–212,
2006
). So a set
A
G
,
S
(
Z
t
)
of its integral tropical points is defined. We introduce a rational positive function
W
on the space
A
G
,
S
, called the
potential
. Its tropicalisation is a function
W
t
:
A
G
,
S
(
Z
t
)
→
Z
. The condition
W
t
≥
0
defines a subset of
positive integral tropical points
A
G
,
S
+
(
Z
t
)
. For
G
=
SL
2
, we recover the set of positive integral
A
-laminations on
S
from Fock and Goncharov (Publ Math IHES 103:1–212,
2006
). We prove that when
S
is a disc with
n
special points on the boundary, the set
A
G
,
S
+
(
Z
t
)
parametrises top dimensional components of the fibers of the convolution maps. Therefore, via the geometric Satake correspondence (Lusztig, Astérisque 101–102:208–229,
1983
; Ginzburg,
1995
; Mirkovic and Vilonen, Ann Math (2) 166(1):95–143,
2007
; Beilinson and Drinfeld, Chiral algebras. American Mathematical Society Colloquium Publications, vol. 51,
2004
) they provide a canonical basis in the tensor product invariants of irreducible modules of the Langlands dual group
G
L
:
1
(
V
λ
1
⊗
…
⊗
V
λ
n
)
G
L
.
When
G
=
GL
m
,
n
=
3
, there is a special coordinate system on
A
G
,
S
(Fock and Goncharov, Publ Math IHES 103:1–212,
2006
). We show that it identifies the set
A
GL
m
,
S
+
(
Z
t
)
with Knutson–Tao’s hives (Knutson and Tao, The honeycomb model of GL(n) tensor products I: proof of the saturation conjecture,
1998
). Our result generalises a theorem of Kamnitzer (Hives and the fibres of the convolution morphism,
2007
), who used hives to parametrise top components of convolution varieties for
G
=
GL
m
,
n
=
3
. For
G
=
GL
m
,
n
>
3
, we prove Kamnitzer’s conjecture (Kamnitzer, Hives and the fibres of the convolution morphism,
2012
). Our parametrisation is naturally cyclic invariant. We show that for any
G
and
n
=
3
it agrees with Berenstein–Zelevinsky’s parametrisation (Berenstein and Zelevinsky, Invent Math 143(1):77–128,
2001
), whose cyclic invariance is obscure. We define more general positive spaces with potentials
(
A
,
W
)
, parametrising mixed configurations of flags. Using them, we define a generalization |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s00222-014-0568-2 |