Moments and distribution of central L-values of quadratic twists of elliptic curves

We show that if one can compute a little more than a particular moment for some family of L-functions, then one has upper bounds of the conjectured order of magnitude for all smaller (positive, real) moments and a one-sided central limit theorem holds. We illustrate our method for the family of quad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inventiones mathematicae 2015-12, Vol.202 (3), p.1029-1068
Hauptverfasser: Radziwiłł, Maksym, Soundararajan, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that if one can compute a little more than a particular moment for some family of L-functions, then one has upper bounds of the conjectured order of magnitude for all smaller (positive, real) moments and a one-sided central limit theorem holds. We illustrate our method for the family of quadratic twists of an elliptic curve, obtaining sharp upper bounds for all moments below the first. We also establish a one sided central limit theorem supporting a conjecture of Keating and Snaith. Our work leads to a conjecture on the distribution of the order of the Tate-Shafarevich group for rank zero quadratic twists of an elliptic curve, and establishes the upper bound part of this conjecture (assuming the Birch-Swinnerton-Dyer conjecture).
ISSN:0020-9910
1432-1297
DOI:10.1007/s00222-015-0582-z