Robustness of Pisot-regular sequences

We consider numeration systems based on a \(d\)-tuple \(\mathbf{U}=(U_1,\ldots,U_d)\) of sequences of integers and we define \((\mathbf{U},\mathbb{K})\)-regular sequences through \(\mathbb{K}\)-recognizable formal series, where \(\mathbb{K}\) is any semiring. We show that, for any \(d\)-tuple \(\mat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-01
Hauptverfasser: Charlier, Émilie, Cisternino, Célia, Stipulanti, Manon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider numeration systems based on a \(d\)-tuple \(\mathbf{U}=(U_1,\ldots,U_d)\) of sequences of integers and we define \((\mathbf{U},\mathbb{K})\)-regular sequences through \(\mathbb{K}\)-recognizable formal series, where \(\mathbb{K}\) is any semiring. We show that, for any \(d\)-tuple \(\mathbf{U}\) of Pisot numeration systems and any commutative semiring \(\mathbb{K}\), this definition does not depend on the greediness of the \(\mathbf{U}\)-representations of integers. The proof is constructive and is based on the fact that the normalization is realizable by a \(2d\)-tape finite automaton. In particular, we use an ad hoc operation mixing a \(2d\)-tape automaton and a \(\mathbb{K}\)-automaton in order to obtain a new \(\mathbb{K}\)-automaton.
ISSN:2331-8422