Minimalist designs

The iterative absorption method has recently led to major progress in the area of (hyper‐)graph decompositions. Among other results, a new proof of the existence conjecture for combinatorial designs, and some generalizations, was obtained. Here, we illustrate the method by investigating triangle dec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2020-08, Vol.57 (1), p.47-63
Hauptverfasser: Barber, Ben, Glock, Stefan, Kühn, Daniela, Lo, Allan, Montgomery, Richard, Osthus, Deryk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The iterative absorption method has recently led to major progress in the area of (hyper‐)graph decompositions. Among other results, a new proof of the existence conjecture for combinatorial designs, and some generalizations, was obtained. Here, we illustrate the method by investigating triangle decompositions: We give a simple proof that a triangle‐divisible graph of large minimum degree has a triangle decomposition and prove a similar result for quasi‐random host graphs.
ISSN:1042-9832
1098-2418
DOI:10.1002/rsa.20915