Reaction Kinetic Analysis of Manganese Peroxidase Augmented Aerobic Waste Degradation
Abstract Past research has shown that waste degradation in landfills could be affected by augmenting with manganese peroxidase (MnP) enzyme via increased hydrolysis of organic waste. However, at present there are no quantification methods available to quantify the effects. Since kinetic parameters a...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous, toxic and radioactive waste toxic and radioactive waste, 2020-10, Vol.24 (4) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Past research has shown that waste degradation in landfills could be affected by augmenting with manganese peroxidase (MnP) enzyme via increased hydrolysis of organic waste. However, at present there are no quantification methods available to quantify the effects. Since kinetic parameters are direct indicators of waste degradation performance, they can be used to provide an estimate of enzyme-augmented waste degradation. A new reaction kinetic model was developed for enzyme-catalyzed reactions to determine the relevant reaction kinetic parameters. Three important kinetic parameters (overall reaction kinetic constant, hydrolysis rate constant, and oxygen assimilation constant) were quantified and compared for uncatalyzed and enzyme-catalyzed reactions. The results showed that enzyme augmentation does not yield an increase in overall waste degradation proportionate to hydrolysis of waste. Nevertheless, the overall waste degradation rate was three times higher for enzyme-catalyzed reactions than uncatalyzed reactions. This observation supports the use of MnP augmentation to increase waste degradation and as a waste stabilization strategy. |
---|---|
ISSN: | 2153-5493 2153-5515 |
DOI: | 10.1061/(ASCE)HZ.2153-5515.0000536 |