Regular and Vertex-Transitive Kähler Graphs Having Commutative Principal and Auxiliary Adjacency Operators

A Kähler graph is a compound of two graphs having a common set of vertices and is a discrete model of a Riemannian manifold equipped with magnetic fields. In this paper we study selfadjointness of adjacency operators of Kähler graphs and express their zeta functions in terms of eigenvalues of their...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Graphs and combinatorics 2020-07, Vol.36 (4), p.933-958
Hauptverfasser: Adachi, Toshiaki, Chen, Guanyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Kähler graph is a compound of two graphs having a common set of vertices and is a discrete model of a Riemannian manifold equipped with magnetic fields. In this paper we study selfadjointness of adjacency operators of Kähler graphs and express their zeta functions in terms of eigenvalues of their principal and auxiliary adjacency operators when they are commutative. Also, we construct finite vertex-transitive Kähler graphs satisfying the commutativity condition.
ISSN:0911-0119
1435-5914
DOI:10.1007/s00373-020-02151-2