Hyperparameters of Multilayer Perceptron with Normal Distributed Weights

Multilayer Perceptrons, Recurrent neural networks, Convolutional networks, and others types of neural networks are widespread nowadays. Neural Networks have hyperparameters like number of hidden layers, number of units for each hidden layer, learning rate, and activation function. Bayesian Optimizat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition and image analysis 2020-04, Vol.30 (2), p.170-173
Hauptverfasser: Karaki, Y., Ivanov, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multilayer Perceptrons, Recurrent neural networks, Convolutional networks, and others types of neural networks are widespread nowadays. Neural Networks have hyperparameters like number of hidden layers, number of units for each hidden layer, learning rate, and activation function. Bayesian Optimization is one of the methods used for tuning hyperparameters. Usually this technique treats values of neurons in network as stochastic Gaussian processes. This article reports experimental results on multivariate normality test and proves that the neuron vectors are considerably far from Gaussian distribution.
ISSN:1054-6618
1555-6212
DOI:10.1134/S1054661820020054