Hyperparameters of Multilayer Perceptron with Normal Distributed Weights
Multilayer Perceptrons, Recurrent neural networks, Convolutional networks, and others types of neural networks are widespread nowadays. Neural Networks have hyperparameters like number of hidden layers, number of units for each hidden layer, learning rate, and activation function. Bayesian Optimizat...
Gespeichert in:
Veröffentlicht in: | Pattern recognition and image analysis 2020-04, Vol.30 (2), p.170-173 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multilayer Perceptrons, Recurrent neural networks, Convolutional networks, and others types of neural networks are widespread nowadays. Neural Networks have hyperparameters like number of hidden layers, number of units for each hidden layer, learning rate, and activation function. Bayesian Optimization is one of the methods used for tuning hyperparameters. Usually this technique treats values of neurons in network as stochastic Gaussian processes. This article reports experimental results on multivariate normality test and proves that the neuron vectors are considerably far from Gaussian distribution. |
---|---|
ISSN: | 1054-6618 1555-6212 |
DOI: | 10.1134/S1054661820020054 |