Morita equivalence of formal Poisson structures

We extend the notion of Morita equivalence of Poisson manifolds to the setting of {\em formal} Poisson structures, i.e., formal power series of bivector fields \(\pi=\pi_0 + \lambda\pi_1 +\cdots\) satisfying the Poisson integrability condition \([\pi,\pi]=0\). Our main result gives a complete descri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-06
Hauptverfasser: Bursztyn, Henrique, Ortiz, Inocencio, Waldmann, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We extend the notion of Morita equivalence of Poisson manifolds to the setting of {\em formal} Poisson structures, i.e., formal power series of bivector fields \(\pi=\pi_0 + \lambda\pi_1 +\cdots\) satisfying the Poisson integrability condition \([\pi,\pi]=0\). Our main result gives a complete description of Morita equivalent formal Poisson structures deforming the zero structure (\(\pi_0=0\)) in terms of \(B\)-field transformations, relying on a general study of formal deformations of Poisson morphisms and dual pairs. Combined with previous work on Morita equivalence of star products, our results link the notions of Morita equivalence in Poisson geometry and noncommutative algebra via deformation quantization.
ISSN:2331-8422