Morita equivalence of formal Poisson structures
We extend the notion of Morita equivalence of Poisson manifolds to the setting of {\em formal} Poisson structures, i.e., formal power series of bivector fields \(\pi=\pi_0 + \lambda\pi_1 +\cdots\) satisfying the Poisson integrability condition \([\pi,\pi]=0\). Our main result gives a complete descri...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-06 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We extend the notion of Morita equivalence of Poisson manifolds to the setting of {\em formal} Poisson structures, i.e., formal power series of bivector fields \(\pi=\pi_0 + \lambda\pi_1 +\cdots\) satisfying the Poisson integrability condition \([\pi,\pi]=0\). Our main result gives a complete description of Morita equivalent formal Poisson structures deforming the zero structure (\(\pi_0=0\)) in terms of \(B\)-field transformations, relying on a general study of formal deformations of Poisson morphisms and dual pairs. Combined with previous work on Morita equivalence of star products, our results link the notions of Morita equivalence in Poisson geometry and noncommutative algebra via deformation quantization. |
---|---|
ISSN: | 2331-8422 |