Dopant Activation of In Situ Phosphorus‐Doped Silicon Using Multi‐Pulse Nanosecond Laser Annealing

In situ phosphorus‐doped epitaxial silicon films have attracted significant attention as source and drain materials because low specific contact resistivities have been achieved on such films by increasing the active carrier concentration using millisecond laser annealing. However, the active phosph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2020-06, Vol.217 (12), p.n/a
Hauptverfasser: Shin, Hyunsu, Lee, Minhyung, Ko, Eunjung, Ryu, Hwa-yoen, Park, Seran, Kim, Eunha, Ko, Dae-Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 217
creator Shin, Hyunsu
Lee, Minhyung
Ko, Eunjung
Ryu, Hwa-yoen
Park, Seran
Kim, Eunha
Ko, Dae-Hong
description In situ phosphorus‐doped epitaxial silicon films have attracted significant attention as source and drain materials because low specific contact resistivities have been achieved on such films by increasing the active carrier concentration using millisecond laser annealing. However, the active phosphorus concentration that can be achieved using millisecond laser annealing is much less than the incorporated concentration. To increase the activation efficiency, nanosecond laser annealing with a dwell time ≈104 times shorter than that of millisecond laser annealing is investigated and the diffusion, strain, microstructure, and electrical properties of single‐ and multipulse nanosecond laser‐annealed samples are examined. The melting depth simulation classifies the energy density regions and explains the limited diffusion in nanosecond laser annealing. After multipulse nanosecond laser annealing, more phosphorus is activated without diffusion than by millisecond laser annealing. Moreover, almost all the incorporated phosphorus atoms are activated by the nanosecond laser, which melts in situ phosphorus‐doped epitaxial silicon films without major strain loss. The increased active carrier concentration presents an opportunity to achieve low contact resistivity characteristics. Nanosecond laser annealing is performed on in situ phosphorus‐doped silicon in single‐ and multipulse modes. The active phosphorus concentration is increased with the laser power density and number of laser pulses and more phosphorus is activated with nanosecond lasers than with millisecond lasers. Moreover, almost all the incorporated phosphorus atoms are activated.
doi_str_mv 10.1002/pssa.201900988
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2414431305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2414431305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3178-f2b4d6053c76873b6ffd3642741218f1c7fc7c14d03cd5d0d7aefd59d75eb37f3</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKtb1wHXrckkM5lZDvWvULVQuw5pfmzKmIzJjNKdj-Az-iSmVHTp6l7u-c65cAA4x2iMEcou2xjFOEO4QqgqywMwwGWRjQqCq8PfHaFjcBLjBiGaU4YHwFz5VrgO1rKzb6Kz3kFv4NTBhe16OF_72K596OPXx2citUr3xspELaN1z_C-bzqbtHnfRA0fhPNRJ1XBmYg6wNo5LZoEnoIjIxJy9jOHYHlz_TS5G80eb6eTejaSBLNyZLIVVQXKiWRFyciqMEaRgmaM4gyXBktmJJOYKkSkyhVSTGij8kqxXK8IM2QILva5bfCvvY4d3_g-uPSSZxRTSjBJ6UMw3lMy-BiDNrwN9kWELceI77rkuy75b5fJUO0N77bR239oPl8s6j_vN6D1e24</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2414431305</pqid></control><display><type>article</type><title>Dopant Activation of In Situ Phosphorus‐Doped Silicon Using Multi‐Pulse Nanosecond Laser Annealing</title><source>Wiley Journals</source><creator>Shin, Hyunsu ; Lee, Minhyung ; Ko, Eunjung ; Ryu, Hwa-yoen ; Park, Seran ; Kim, Eunha ; Ko, Dae-Hong</creator><creatorcontrib>Shin, Hyunsu ; Lee, Minhyung ; Ko, Eunjung ; Ryu, Hwa-yoen ; Park, Seran ; Kim, Eunha ; Ko, Dae-Hong</creatorcontrib><description>In situ phosphorus‐doped epitaxial silicon films have attracted significant attention as source and drain materials because low specific contact resistivities have been achieved on such films by increasing the active carrier concentration using millisecond laser annealing. However, the active phosphorus concentration that can be achieved using millisecond laser annealing is much less than the incorporated concentration. To increase the activation efficiency, nanosecond laser annealing with a dwell time ≈104 times shorter than that of millisecond laser annealing is investigated and the diffusion, strain, microstructure, and electrical properties of single‐ and multipulse nanosecond laser‐annealed samples are examined. The melting depth simulation classifies the energy density regions and explains the limited diffusion in nanosecond laser annealing. After multipulse nanosecond laser annealing, more phosphorus is activated without diffusion than by millisecond laser annealing. Moreover, almost all the incorporated phosphorus atoms are activated by the nanosecond laser, which melts in situ phosphorus‐doped epitaxial silicon films without major strain loss. The increased active carrier concentration presents an opportunity to achieve low contact resistivity characteristics. Nanosecond laser annealing is performed on in situ phosphorus‐doped silicon in single‐ and multipulse modes. The active phosphorus concentration is increased with the laser power density and number of laser pulses and more phosphorus is activated with nanosecond lasers than with millisecond lasers. Moreover, almost all the incorporated phosphorus atoms are activated.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.201900988</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Activation ; Annealing ; Carrier density ; diffusion ; Diffusion annealing ; dopant activation ; Dwell time ; Electric contacts ; Electrical properties ; epitaxial silicon films ; Flux density ; Laser beam annealing ; Lasers ; nanosecond laser annealing ; Phosphorus ; phosphorus-doped silicon ; Silicon films</subject><ispartof>Physica status solidi. A, Applications and materials science, 2020-06, Vol.217 (12), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3178-f2b4d6053c76873b6ffd3642741218f1c7fc7c14d03cd5d0d7aefd59d75eb37f3</citedby><cites>FETCH-LOGICAL-c3178-f2b4d6053c76873b6ffd3642741218f1c7fc7c14d03cd5d0d7aefd59d75eb37f3</cites><orcidid>0000-0002-0222-1304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.201900988$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.201900988$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Shin, Hyunsu</creatorcontrib><creatorcontrib>Lee, Minhyung</creatorcontrib><creatorcontrib>Ko, Eunjung</creatorcontrib><creatorcontrib>Ryu, Hwa-yoen</creatorcontrib><creatorcontrib>Park, Seran</creatorcontrib><creatorcontrib>Kim, Eunha</creatorcontrib><creatorcontrib>Ko, Dae-Hong</creatorcontrib><title>Dopant Activation of In Situ Phosphorus‐Doped Silicon Using Multi‐Pulse Nanosecond Laser Annealing</title><title>Physica status solidi. A, Applications and materials science</title><description>In situ phosphorus‐doped epitaxial silicon films have attracted significant attention as source and drain materials because low specific contact resistivities have been achieved on such films by increasing the active carrier concentration using millisecond laser annealing. However, the active phosphorus concentration that can be achieved using millisecond laser annealing is much less than the incorporated concentration. To increase the activation efficiency, nanosecond laser annealing with a dwell time ≈104 times shorter than that of millisecond laser annealing is investigated and the diffusion, strain, microstructure, and electrical properties of single‐ and multipulse nanosecond laser‐annealed samples are examined. The melting depth simulation classifies the energy density regions and explains the limited diffusion in nanosecond laser annealing. After multipulse nanosecond laser annealing, more phosphorus is activated without diffusion than by millisecond laser annealing. Moreover, almost all the incorporated phosphorus atoms are activated by the nanosecond laser, which melts in situ phosphorus‐doped epitaxial silicon films without major strain loss. The increased active carrier concentration presents an opportunity to achieve low contact resistivity characteristics. Nanosecond laser annealing is performed on in situ phosphorus‐doped silicon in single‐ and multipulse modes. The active phosphorus concentration is increased with the laser power density and number of laser pulses and more phosphorus is activated with nanosecond lasers than with millisecond lasers. Moreover, almost all the incorporated phosphorus atoms are activated.</description><subject>Activation</subject><subject>Annealing</subject><subject>Carrier density</subject><subject>diffusion</subject><subject>Diffusion annealing</subject><subject>dopant activation</subject><subject>Dwell time</subject><subject>Electric contacts</subject><subject>Electrical properties</subject><subject>epitaxial silicon films</subject><subject>Flux density</subject><subject>Laser beam annealing</subject><subject>Lasers</subject><subject>nanosecond laser annealing</subject><subject>Phosphorus</subject><subject>phosphorus-doped silicon</subject><subject>Silicon films</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKtb1wHXrckkM5lZDvWvULVQuw5pfmzKmIzJjNKdj-Az-iSmVHTp6l7u-c65cAA4x2iMEcou2xjFOEO4QqgqywMwwGWRjQqCq8PfHaFjcBLjBiGaU4YHwFz5VrgO1rKzb6Kz3kFv4NTBhe16OF_72K596OPXx2citUr3xspELaN1z_C-bzqbtHnfRA0fhPNRJ1XBmYg6wNo5LZoEnoIjIxJy9jOHYHlz_TS5G80eb6eTejaSBLNyZLIVVQXKiWRFyciqMEaRgmaM4gyXBktmJJOYKkSkyhVSTGij8kqxXK8IM2QILva5bfCvvY4d3_g-uPSSZxRTSjBJ6UMw3lMy-BiDNrwN9kWELceI77rkuy75b5fJUO0N77bR239oPl8s6j_vN6D1e24</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Shin, Hyunsu</creator><creator>Lee, Minhyung</creator><creator>Ko, Eunjung</creator><creator>Ryu, Hwa-yoen</creator><creator>Park, Seran</creator><creator>Kim, Eunha</creator><creator>Ko, Dae-Hong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0222-1304</orcidid></search><sort><creationdate>202006</creationdate><title>Dopant Activation of In Situ Phosphorus‐Doped Silicon Using Multi‐Pulse Nanosecond Laser Annealing</title><author>Shin, Hyunsu ; Lee, Minhyung ; Ko, Eunjung ; Ryu, Hwa-yoen ; Park, Seran ; Kim, Eunha ; Ko, Dae-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3178-f2b4d6053c76873b6ffd3642741218f1c7fc7c14d03cd5d0d7aefd59d75eb37f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activation</topic><topic>Annealing</topic><topic>Carrier density</topic><topic>diffusion</topic><topic>Diffusion annealing</topic><topic>dopant activation</topic><topic>Dwell time</topic><topic>Electric contacts</topic><topic>Electrical properties</topic><topic>epitaxial silicon films</topic><topic>Flux density</topic><topic>Laser beam annealing</topic><topic>Lasers</topic><topic>nanosecond laser annealing</topic><topic>Phosphorus</topic><topic>phosphorus-doped silicon</topic><topic>Silicon films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Hyunsu</creatorcontrib><creatorcontrib>Lee, Minhyung</creatorcontrib><creatorcontrib>Ko, Eunjung</creatorcontrib><creatorcontrib>Ryu, Hwa-yoen</creatorcontrib><creatorcontrib>Park, Seran</creatorcontrib><creatorcontrib>Kim, Eunha</creatorcontrib><creatorcontrib>Ko, Dae-Hong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Hyunsu</au><au>Lee, Minhyung</au><au>Ko, Eunjung</au><au>Ryu, Hwa-yoen</au><au>Park, Seran</au><au>Kim, Eunha</au><au>Ko, Dae-Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dopant Activation of In Situ Phosphorus‐Doped Silicon Using Multi‐Pulse Nanosecond Laser Annealing</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2020-06</date><risdate>2020</risdate><volume>217</volume><issue>12</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>In situ phosphorus‐doped epitaxial silicon films have attracted significant attention as source and drain materials because low specific contact resistivities have been achieved on such films by increasing the active carrier concentration using millisecond laser annealing. However, the active phosphorus concentration that can be achieved using millisecond laser annealing is much less than the incorporated concentration. To increase the activation efficiency, nanosecond laser annealing with a dwell time ≈104 times shorter than that of millisecond laser annealing is investigated and the diffusion, strain, microstructure, and electrical properties of single‐ and multipulse nanosecond laser‐annealed samples are examined. The melting depth simulation classifies the energy density regions and explains the limited diffusion in nanosecond laser annealing. After multipulse nanosecond laser annealing, more phosphorus is activated without diffusion than by millisecond laser annealing. Moreover, almost all the incorporated phosphorus atoms are activated by the nanosecond laser, which melts in situ phosphorus‐doped epitaxial silicon films without major strain loss. The increased active carrier concentration presents an opportunity to achieve low contact resistivity characteristics. Nanosecond laser annealing is performed on in situ phosphorus‐doped silicon in single‐ and multipulse modes. The active phosphorus concentration is increased with the laser power density and number of laser pulses and more phosphorus is activated with nanosecond lasers than with millisecond lasers. Moreover, almost all the incorporated phosphorus atoms are activated.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.201900988</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0222-1304</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2020-06, Vol.217 (12), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_2414431305
source Wiley Journals
subjects Activation
Annealing
Carrier density
diffusion
Diffusion annealing
dopant activation
Dwell time
Electric contacts
Electrical properties
epitaxial silicon films
Flux density
Laser beam annealing
Lasers
nanosecond laser annealing
Phosphorus
phosphorus-doped silicon
Silicon films
title Dopant Activation of In Situ Phosphorus‐Doped Silicon Using Multi‐Pulse Nanosecond Laser Annealing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A40%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dopant%20Activation%20of%20In%20Situ%20Phosphorus%E2%80%90Doped%20Silicon%20Using%20Multi%E2%80%90Pulse%20Nanosecond%20Laser%20Annealing&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Shin,%20Hyunsu&rft.date=2020-06&rft.volume=217&rft.issue=12&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.201900988&rft_dat=%3Cproquest_cross%3E2414431305%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2414431305&rft_id=info:pmid/&rfr_iscdi=true