Dopant Activation of In Situ Phosphorus‐Doped Silicon Using Multi‐Pulse Nanosecond Laser Annealing

In situ phosphorus‐doped epitaxial silicon films have attracted significant attention as source and drain materials because low specific contact resistivities have been achieved on such films by increasing the active carrier concentration using millisecond laser annealing. However, the active phosph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2020-06, Vol.217 (12), p.n/a
Hauptverfasser: Shin, Hyunsu, Lee, Minhyung, Ko, Eunjung, Ryu, Hwa-yoen, Park, Seran, Kim, Eunha, Ko, Dae-Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In situ phosphorus‐doped epitaxial silicon films have attracted significant attention as source and drain materials because low specific contact resistivities have been achieved on such films by increasing the active carrier concentration using millisecond laser annealing. However, the active phosphorus concentration that can be achieved using millisecond laser annealing is much less than the incorporated concentration. To increase the activation efficiency, nanosecond laser annealing with a dwell time ≈104 times shorter than that of millisecond laser annealing is investigated and the diffusion, strain, microstructure, and electrical properties of single‐ and multipulse nanosecond laser‐annealed samples are examined. The melting depth simulation classifies the energy density regions and explains the limited diffusion in nanosecond laser annealing. After multipulse nanosecond laser annealing, more phosphorus is activated without diffusion than by millisecond laser annealing. Moreover, almost all the incorporated phosphorus atoms are activated by the nanosecond laser, which melts in situ phosphorus‐doped epitaxial silicon films without major strain loss. The increased active carrier concentration presents an opportunity to achieve low contact resistivity characteristics. Nanosecond laser annealing is performed on in situ phosphorus‐doped silicon in single‐ and multipulse modes. The active phosphorus concentration is increased with the laser power density and number of laser pulses and more phosphorus is activated with nanosecond lasers than with millisecond lasers. Moreover, almost all the incorporated phosphorus atoms are activated.
ISSN:1862-6300
1862-6319
DOI:10.1002/pssa.201900988