On the Algorithmic Complexity of Roman {2}-Domination (Italian Domination)
A Roman { 2 } -dominating function (R2DF) f : V ⟶ { 0 , 1 , 2 } of a graph G = ( V , E ) has the property that for every vertex v ∈ V with f ( v ) = 0 either there is a vertex u ∈ N ( v ) with f ( u ) = 2 or there are two vertices x , y ∈ N ( v ) with f ( x ) = f ( y ) = 1 . The weight of f is the s...
Gespeichert in:
Veröffentlicht in: | Iranian journal of science and technology. Transaction A, Science Science, 2020-06, Vol.44 (3), p.791-799 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A Roman
{
2
}
-dominating function (R2DF)
f
:
V
⟶
{
0
,
1
,
2
}
of a graph
G
=
(
V
,
E
)
has the property that for every vertex
v
∈
V
with
f
(
v
)
=
0
either there is a vertex
u
∈
N
(
v
)
with
f
(
u
)
=
2
or there are two vertices
x
,
y
∈
N
(
v
)
with
f
(
x
)
=
f
(
y
)
=
1
. The weight of
f
is the sum
f
(
V
)
=
∑
v
∈
V
f
(
v
)
. The minimum weight of an R2DF on
G
is the Roman
{
2
}
-domination number of
G
. In this paper, we first show that the associated decision problem for Roman
{
2
}
-domination is NP-complete even when restricted to planar graphs. Then, we give a linear algorithm that computes the Roman
{
2
}
-domination number of a given unicyclic graph. |
---|---|
ISSN: | 1028-6276 2364-1819 |
DOI: | 10.1007/s40995-020-00875-7 |