Coupling local and nonlocal evolution equations

We prove existence, uniqueness and several qualitative properties for evolution equations that combine local and nonlocal diffusion operators acting in different subdomains and coupled in such a way that the resulting evolution equation is the gradient flow of an energy functional. We deal with the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2020-08, Vol.59 (4), Article 112
Hauptverfasser: Gárriz, Alejandro, Quirós, Fernando, Rossi, Julio D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove existence, uniqueness and several qualitative properties for evolution equations that combine local and nonlocal diffusion operators acting in different subdomains and coupled in such a way that the resulting evolution equation is the gradient flow of an energy functional. We deal with the Cauchy, Neumann and Dirichlet problems, in the last two cases with zero boundary data. For the first two problems we prove that the model preserves the total mass. We also study the decay rates of the solutions for large times. Finally, we show that we can recover the usual heat equation (local diffusion) in a limit procedure when we rescale the nonlocal kernel in a suitable way.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-020-01771-z