Efficiency limits of fans

The purpose of this work is to identify upper efficiency limits of industrial fans such as axial rotor-only fans, axial with guide vanes, centrifugal rotor-only and centrifugal with volute. The efficiency limit is always a function of the class, the design point within the class and the definition o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy Part A: Journal of Power and Energy, 2020-08, Vol.234 (5), p.739-748
Hauptverfasser: Bamberger, Konrad, Carolus, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this work is to identify upper efficiency limits of industrial fans such as axial rotor-only fans, axial with guide vanes, centrifugal rotor-only and centrifugal with volute. The efficiency limit is always a function of the class, the design point within the class and the definition of efficiency (total-to-static and total-to-total). The characteristic Reynolds number is another relevant parameter. First, based on analytical and empirical loss models, a theoretical efficiency limit is estimated. A set of idealizing assumptions in the loss models yields efficiencies which are assumed to be an insuperable limit but may be unrealistically high. Second, more realistic efficiency limits are estimated using a computational fluid dynamics-based optimization scheme, seeking for the best designs and hence the maximum achievable efficiencies in all classes. Given the self-imposed constraints in the geometrical parameter space considered, the thus-obtained practical efficiency limits can only be exceeded by admitting more complex geometries of the fans.
ISSN:0957-6509
2041-2967
DOI:10.1177/0957650919876838