Effects of Microplastics Associated with Triclosan on the Oyster Crassostrea brasiliana: An Integrated Biomarker Approach

Urban waste is a complex mixture of different substances, including microplastics and pharmaceuticals and personal care products. Microplastics have a high affinity for hydrophobic substances. One of these substances is triclosan, a bactericide used in a variety of hygiene products. Therefore, micro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of environmental contamination and toxicology 2020-07, Vol.79 (1), p.101-110
Hauptverfasser: Nobre, Caio Rodrigues, Moreno, Beatriz Barbosa, Alves, Aline Vecchio, de Lima Rosa, Jonas, da Rosa Franco, Heloisa, Abessa, Denis Moledo de Souza, Maranho, Luciane Alves, Choueri, Rodrigo Brasil, Gusso-Choueri, Paloma Kachel, Pereira, Camilo Dias Seabra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Urban waste is a complex mixture of different substances, including microplastics and pharmaceuticals and personal care products. Microplastics have a high affinity for hydrophobic substances. One of these substances is triclosan, a bactericide used in a variety of hygiene products. Therefore, microplastics (MPs) may serve as a vector between triclosan and aquatic organisms. The current study sought to evaluate the effects of the interaction between microplastics and triclosan based on a mechanistic approach in which the oyster Crassostrea brasiliana was used as a model. The organisms were exposed to three conditions: the control, microplastic (MP), and microplastic contaminated with triclosan (MPT). The organisms were exposed for 3 or 7 days. After the exposure time, hemolymph was sampled for performing the neutral red retention time assay and, subsequently, the gills, digestive glands, and adductor muscles were dissected for measuring biomarkers responses (EROD, DBF, GST, GPx, GSH, lipid peroxidation, DNA strand breaks, and AChE). Our results demonstrate combined effects of MPs associated with triclosan on oyster physiology and biochemistry, as well as on lysosomal membrane stability. These results contribute to understanding the effects of contaminants of emerging concern and microplastics on aquatic organisms.
ISSN:0090-4341
1432-0703
DOI:10.1007/s00244-020-00729-8