Transformation of GO to rGO due to 8.0 MeV carbon (C++) ions irradiation and characteristics performance on MnO2–NiO–ZnO@GO electrode

Summary The effect of 8.0 MeV carbon ions (C++) radiations on features and performances of MnO2–NiO–ZnO@GO electrodes (thin films). MnO2–NiO–ZnO@GO thin films were produced using the hydrothermal technique. 8.0 MeV carbon ions (C++) with doses of 2.25 × 1015, 5.0 × 1015, 7.5 × 1015 and 1.0 × 1016 io...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of energy research 2020-06, Vol.44 (8), p.6792-6803
Hauptverfasser: Obodo, Raphael M., Nwanya, Assumpta C., Iroegbu, Chinedu, Ahmad, Ishaq, Ekwealor, Azubike B. C., Osuji, Rose U., Maaza, Malik, Ezema, Fabian I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary The effect of 8.0 MeV carbon ions (C++) radiations on features and performances of MnO2–NiO–ZnO@GO electrodes (thin films). MnO2–NiO–ZnO@GO thin films were produced using the hydrothermal technique. 8.0 MeV carbon ions (C++) with doses of 2.25 × 1015, 5.0 × 1015, 7.5 × 1015 and 1.0 × 1016 ions/cm2 were irradiated on MnO2–NiO–ZnO@GO thin films. The XRD spectra indicate crystalline nature of the films while SEM images show rod‐like structures. The XRD calculated crystallite sizes varied from 1.24 to 5.58 nm. Energy‐dispersive X‐ray spectroscopy, Proton induced X‐ray emission (PIXE) and Rutherford back scattering (RBS) analysis are used to evaluate the elemental compositions of samples. Optical studies show reduced bandgap energies of various oxides due to the addition of graphene oxide. The electrochemical studies obtained a specific capacitance of 1627 and 1960 F/g for electrodes illuminated with radiation doses of 5.0 × 1015 and 7.5 × 1015 ions/cm2, respectively. Results indicate that carbon ion irradiation with low doses improved the performances of the nanostructured thin films while radiation with high doses induces adverse disorder and flaw to the MnO2–NiO–ZnO@GO thin film properties. These results show that ion beam irradiation is a useful tool to enhance or damage the properties of nanostructured materials depending on the dosages radiation beamed on the material. Carbon ion irradiation causes significant changes in the properties of the thin films The level of defects increases with increasing of ion dosage Changes in the properties of the nanostructured thin films include diminishing in crystallinity, particle size and bandgap energies Moderate ion dose brings about remarkable and useful changes to the properties of the nanostructure Ion beam irradiation is a useful technique enhances the morphological, optical and phase properties of thin
ISSN:0363-907X
1099-114X
DOI:10.1002/er.5416