A systematic study of blockage in three-dimensional branching networks with an application to model human bronchial tree
A major aim of the present study is to understand and thoroughly document the fluid dynamics in three-dimensional branching networks when an intermediate branch is partially or completely obstructed. Altogether, 26 different three-dimensional networks each comprising six generations of branches (inv...
Gespeichert in:
Veröffentlicht in: | Theoretical and computational fluid dynamics 2020-06, Vol.34 (3), p.301-332 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A major aim of the present study is to understand and thoroughly document the fluid dynamics in three-dimensional branching networks when an intermediate branch is partially or completely obstructed. Altogether, 26 different three-dimensional networks each comprising six generations of branches (involving 63 straight portions and 31 bifurcation modules) are constructed and appropriately meshed to conduct a systematic study of the effects of varying the locations of a blockage of a given relative extent and varying the extent of a blockage at a fixed location. The side-by-side consideration of two branching configurations (in-plane and
90
∘
out-of-plane) gives a quantitative assessment of the dependence of flow alteration due to blockage on the three-dimensional arrangement of the same individual branches. A blockage in any branch affects the flow in both downstream and upstream branches. The presence of a blockage can make three-dimensional asymmetric alteration to the flow field, even when the blockage itself is geometrically symmetric. The overall mass flow rate entering the network is found to remain nearly unaltered if a blockage is shifted within the same generation but is progressively reduced if the blockage is shifted to upstream generations. A blockage anywhere in the network increases the degree of mass flow asymmetry
δ
G
n
in any generation. The order of magnitude disparity in
δ
G
n
between the in-plane and out-of-plane configurations, characteristic of unobstructed networks, can be significantly reduced in the presence of a single blockage. The present three-dimensional computations show that the effects of blockage on the mass flow distribution in a large network are complex, often non-intuitive and sometimes dramatic, and cannot be captured by any simple one-dimensional model. |
---|---|
ISSN: | 0935-4964 1432-2250 |
DOI: | 10.1007/s00162-020-00523-1 |