Bootstraps to strings: solving random matrix models with positivity

A bstract A new approach to solving random matrix models directly in the large N limit is developed. First, a set of numerical values for some low-pt correlation functions is guessed. The large N loop equations are then used to generate values of higher-pt correlation functions based on this guess....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2020-06, Vol.2020 (6), Article 90
1. Verfasser: Lin, Henry W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract A new approach to solving random matrix models directly in the large N limit is developed. First, a set of numerical values for some low-pt correlation functions is guessed. The large N loop equations are then used to generate values of higher-pt correlation functions based on this guess. Then one tests whether these higher-pt functions are consistent with positivity requirements, e.g., ( tr M 2 k ) ≥ 0. If not, the guessed values are systematically ruled out. In this way, one can constrain the correlation functions of random matrices to a tiny subregion which contains (and perhaps converges to) the true solution. This approach is tested on single and multi-matrix models and handily reproduces known solutions. It also produces strong results for multi-matrix models which are not believed to be solvable. A tantalizing possibility is that this method could be used to search for new critical points, or string worldsheet theories.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP06(2020)090