Comparison of the Process Systems Code With the SONIC Divertor Code
In a demonstration (DEMO) reactor, mitigation of the large heat load on the divertor target to the below material and engineering limits is a key requirement for operation. Systems modeling is used to design entire fusion power plants and, therefore, has to be able to appropriately capture the diver...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 2020-06, Vol.48 (6), p.1799-1803 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1803 |
---|---|
container_issue | 6 |
container_start_page | 1799 |
container_title | IEEE transactions on plasma science |
container_volume | 48 |
creator | Morris, J. Asakura, N. Homma, Y. Hoshino, K. Kovari, M. |
description | In a demonstration (DEMO) reactor, mitigation of the large heat load on the divertor target to the below material and engineering limits is a key requirement for operation. Systems modeling is used to design entire fusion power plants and, therefore, has to be able to appropriately capture the divertor challenge. Therefore, it is important to validate these models against comprehensive SOL-divertor simulation codes and experiments. A 1-D divertor model in PROCESS was investigated, compared to the results of 2-D SONIC simulation under the detachment condition. The comparison shows how the 1-D divertor model handles the power loss mechanisms from the outboard mid-plane to the outer divertor target for a DEMO-like condition. The results show good agreement on the calculated value of the total power crossing the separatrix ( |
doi_str_mv | 10.1109/TPS.2020.2967859 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2413217280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8998560</ieee_id><sourcerecordid>2413217280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-5314f368028ea3cd29b5aae56575743012d928a470ade1af149569c81df26c543</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7wU3A9dR7k8lMspTxVSi2MBWXIc7coVNsU5Op0H_v9IGruzjfORc-xm4RRohgHuazciRAwEiYLNfKnLEBGmkSI3N1zgYARiZSo7xkVzEuATBVIAasKPxq40Ib_Zr7hncL4rPgK4qRl7vY0SrywtfEP9tucUjL6fu44E_tL4XOh0N4zS4a9x3p5nSH7OPleV68JZPp67h4nCSV0LpLlMS0kZkGocnJqhbmSzlHKlO5ylMJKGojtEtzcDWhazA1KjOVxroRWaVSOWT3x91N8D9bip1d-m1Y9y-tSFEKzIWGnoIjVQUfY6DGbkK7cmFnEexele1V2b0qe1LVV-6OlZaI_nFtjFYZyD-qv2JT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413217280</pqid></control><display><type>article</type><title>Comparison of the Process Systems Code With the SONIC Divertor Code</title><source>IEEE Electronic Library (IEL)</source><creator>Morris, J. ; Asakura, N. ; Homma, Y. ; Hoshino, K. ; Kovari, M.</creator><creatorcontrib>Morris, J. ; Asakura, N. ; Homma, Y. ; Hoshino, K. ; Kovari, M.</creatorcontrib><description><![CDATA[In a demonstration (DEMO) reactor, mitigation of the large heat load on the divertor target to the below material and engineering limits is a key requirement for operation. Systems modeling is used to design entire fusion power plants and, therefore, has to be able to appropriately capture the divertor challenge. Therefore, it is important to validate these models against comprehensive SOL-divertor simulation codes and experiments. A 1-D divertor model in PROCESS was investigated, compared to the results of 2-D SONIC simulation under the detachment condition. The comparison shows how the 1-D divertor model handles the power loss mechanisms from the outboard mid-plane to the outer divertor target for a DEMO-like condition. The results show good agreement on the calculated value of the total power crossing the separatrix (<5% difference) and the total impurity radiation power <inline-formula> <tex-math notation="LaTeX">P_{\mathrm{ imp}} </tex-math></inline-formula> (<10% difference). However, the 1-D profiles show differences in density and temperature at the upstream of the target (<10 m of connection length to target, corresponding to 10 cm in the poloidal length). One reason for this difference is that the 2-D model calculates impurity transport, which produces a variable impurity fraction along the connection length in the divertor, while the 1-D model uses a single averaged value. The SONIC code also considers physical processes not covered in the 1-D model, such as radial transport in the SOL and divertor region. A scan of <inline-formula> <tex-math notation="LaTeX">P_{\mathrm{ sep}} </tex-math></inline-formula> values in PROCESS for a DEMO-sized machine show that above <inline-formula> <tex-math notation="LaTeX">P_{\mathrm{ sep}} = 200 </tex-math></inline-formula> MW, there is a stronger impact on cost and machine size for higher <inline-formula> <tex-math notation="LaTeX">P_{\mathrm{ sep}} </tex-math></inline-formula>.]]></description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2020.2967859</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer simulation ; Demonstration (DEMO) ; divertor ; Electric power generation ; Electron tubes ; Heating systems ; Impurities ; Ions ; Load modeling ; Mathematical model ; Mitigation ; nuclear fusion ; Nuclear power plants ; Plasmas ; Power loss ; Power plants ; PROCESS ; Radiation ; SOL ; SONIC ; systems codes ; Two dimensional models</subject><ispartof>IEEE transactions on plasma science, 2020-06, Vol.48 (6), p.1799-1803</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c288t-5314f368028ea3cd29b5aae56575743012d928a470ade1af149569c81df26c543</cites><orcidid>0000-0002-9872-9697 ; 0000-0002-1415-2924 ; 0000-0001-5672-9640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8998560$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8998560$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Morris, J.</creatorcontrib><creatorcontrib>Asakura, N.</creatorcontrib><creatorcontrib>Homma, Y.</creatorcontrib><creatorcontrib>Hoshino, K.</creatorcontrib><creatorcontrib>Kovari, M.</creatorcontrib><title>Comparison of the Process Systems Code With the SONIC Divertor Code</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description><![CDATA[In a demonstration (DEMO) reactor, mitigation of the large heat load on the divertor target to the below material and engineering limits is a key requirement for operation. Systems modeling is used to design entire fusion power plants and, therefore, has to be able to appropriately capture the divertor challenge. Therefore, it is important to validate these models against comprehensive SOL-divertor simulation codes and experiments. A 1-D divertor model in PROCESS was investigated, compared to the results of 2-D SONIC simulation under the detachment condition. The comparison shows how the 1-D divertor model handles the power loss mechanisms from the outboard mid-plane to the outer divertor target for a DEMO-like condition. The results show good agreement on the calculated value of the total power crossing the separatrix (<5% difference) and the total impurity radiation power <inline-formula> <tex-math notation="LaTeX">P_{\mathrm{ imp}} </tex-math></inline-formula> (<10% difference). However, the 1-D profiles show differences in density and temperature at the upstream of the target (<10 m of connection length to target, corresponding to 10 cm in the poloidal length). One reason for this difference is that the 2-D model calculates impurity transport, which produces a variable impurity fraction along the connection length in the divertor, while the 1-D model uses a single averaged value. The SONIC code also considers physical processes not covered in the 1-D model, such as radial transport in the SOL and divertor region. A scan of <inline-formula> <tex-math notation="LaTeX">P_{\mathrm{ sep}} </tex-math></inline-formula> values in PROCESS for a DEMO-sized machine show that above <inline-formula> <tex-math notation="LaTeX">P_{\mathrm{ sep}} = 200 </tex-math></inline-formula> MW, there is a stronger impact on cost and machine size for higher <inline-formula> <tex-math notation="LaTeX">P_{\mathrm{ sep}} </tex-math></inline-formula>.]]></description><subject>Computer simulation</subject><subject>Demonstration (DEMO)</subject><subject>divertor</subject><subject>Electric power generation</subject><subject>Electron tubes</subject><subject>Heating systems</subject><subject>Impurities</subject><subject>Ions</subject><subject>Load modeling</subject><subject>Mathematical model</subject><subject>Mitigation</subject><subject>nuclear fusion</subject><subject>Nuclear power plants</subject><subject>Plasmas</subject><subject>Power loss</subject><subject>Power plants</subject><subject>PROCESS</subject><subject>Radiation</subject><subject>SOL</subject><subject>SONIC</subject><subject>systems codes</subject><subject>Two dimensional models</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKt7wU3A9dR7k8lMspTxVSi2MBWXIc7coVNsU5Op0H_v9IGruzjfORc-xm4RRohgHuazciRAwEiYLNfKnLEBGmkSI3N1zgYARiZSo7xkVzEuATBVIAasKPxq40Ib_Zr7hncL4rPgK4qRl7vY0SrywtfEP9tucUjL6fu44E_tL4XOh0N4zS4a9x3p5nSH7OPleV68JZPp67h4nCSV0LpLlMS0kZkGocnJqhbmSzlHKlO5ylMJKGojtEtzcDWhazA1KjOVxroRWaVSOWT3x91N8D9bip1d-m1Y9y-tSFEKzIWGnoIjVQUfY6DGbkK7cmFnEexele1V2b0qe1LVV-6OlZaI_nFtjFYZyD-qv2JT</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Morris, J.</creator><creator>Asakura, N.</creator><creator>Homma, Y.</creator><creator>Hoshino, K.</creator><creator>Kovari, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9872-9697</orcidid><orcidid>https://orcid.org/0000-0002-1415-2924</orcidid><orcidid>https://orcid.org/0000-0001-5672-9640</orcidid></search><sort><creationdate>20200601</creationdate><title>Comparison of the Process Systems Code With the SONIC Divertor Code</title><author>Morris, J. ; Asakura, N. ; Homma, Y. ; Hoshino, K. ; Kovari, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-5314f368028ea3cd29b5aae56575743012d928a470ade1af149569c81df26c543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>Demonstration (DEMO)</topic><topic>divertor</topic><topic>Electric power generation</topic><topic>Electron tubes</topic><topic>Heating systems</topic><topic>Impurities</topic><topic>Ions</topic><topic>Load modeling</topic><topic>Mathematical model</topic><topic>Mitigation</topic><topic>nuclear fusion</topic><topic>Nuclear power plants</topic><topic>Plasmas</topic><topic>Power loss</topic><topic>Power plants</topic><topic>PROCESS</topic><topic>Radiation</topic><topic>SOL</topic><topic>SONIC</topic><topic>systems codes</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morris, J.</creatorcontrib><creatorcontrib>Asakura, N.</creatorcontrib><creatorcontrib>Homma, Y.</creatorcontrib><creatorcontrib>Hoshino, K.</creatorcontrib><creatorcontrib>Kovari, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Morris, J.</au><au>Asakura, N.</au><au>Homma, Y.</au><au>Hoshino, K.</au><au>Kovari, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of the Process Systems Code With the SONIC Divertor Code</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>48</volume><issue>6</issue><spage>1799</spage><epage>1803</epage><pages>1799-1803</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract><![CDATA[In a demonstration (DEMO) reactor, mitigation of the large heat load on the divertor target to the below material and engineering limits is a key requirement for operation. Systems modeling is used to design entire fusion power plants and, therefore, has to be able to appropriately capture the divertor challenge. Therefore, it is important to validate these models against comprehensive SOL-divertor simulation codes and experiments. A 1-D divertor model in PROCESS was investigated, compared to the results of 2-D SONIC simulation under the detachment condition. The comparison shows how the 1-D divertor model handles the power loss mechanisms from the outboard mid-plane to the outer divertor target for a DEMO-like condition. The results show good agreement on the calculated value of the total power crossing the separatrix (<5% difference) and the total impurity radiation power <inline-formula> <tex-math notation="LaTeX">P_{\mathrm{ imp}} </tex-math></inline-formula> (<10% difference). However, the 1-D profiles show differences in density and temperature at the upstream of the target (<10 m of connection length to target, corresponding to 10 cm in the poloidal length). One reason for this difference is that the 2-D model calculates impurity transport, which produces a variable impurity fraction along the connection length in the divertor, while the 1-D model uses a single averaged value. The SONIC code also considers physical processes not covered in the 1-D model, such as radial transport in the SOL and divertor region. A scan of <inline-formula> <tex-math notation="LaTeX">P_{\mathrm{ sep}} </tex-math></inline-formula> values in PROCESS for a DEMO-sized machine show that above <inline-formula> <tex-math notation="LaTeX">P_{\mathrm{ sep}} = 200 </tex-math></inline-formula> MW, there is a stronger impact on cost and machine size for higher <inline-formula> <tex-math notation="LaTeX">P_{\mathrm{ sep}} </tex-math></inline-formula>.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2020.2967859</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9872-9697</orcidid><orcidid>https://orcid.org/0000-0002-1415-2924</orcidid><orcidid>https://orcid.org/0000-0001-5672-9640</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2020-06, Vol.48 (6), p.1799-1803 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_proquest_journals_2413217280 |
source | IEEE Electronic Library (IEL) |
subjects | Computer simulation Demonstration (DEMO) divertor Electric power generation Electron tubes Heating systems Impurities Ions Load modeling Mathematical model Mitigation nuclear fusion Nuclear power plants Plasmas Power loss Power plants PROCESS Radiation SOL SONIC systems codes Two dimensional models |
title | Comparison of the Process Systems Code With the SONIC Divertor Code |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A59%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20the%20Process%20Systems%20Code%20With%20the%20SONIC%20Divertor%20Code&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Morris,%20J.&rft.date=2020-06-01&rft.volume=48&rft.issue=6&rft.spage=1799&rft.epage=1803&rft.pages=1799-1803&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2020.2967859&rft_dat=%3Cproquest_RIE%3E2413217280%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2413217280&rft_id=info:pmid/&rft_ieee_id=8998560&rfr_iscdi=true |