Comparison of the Process Systems Code With the SONIC Divertor Code

In a demonstration (DEMO) reactor, mitigation of the large heat load on the divertor target to the below material and engineering limits is a key requirement for operation. Systems modeling is used to design entire fusion power plants and, therefore, has to be able to appropriately capture the diver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2020-06, Vol.48 (6), p.1799-1803
Hauptverfasser: Morris, J., Asakura, N., Homma, Y., Hoshino, K., Kovari, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a demonstration (DEMO) reactor, mitigation of the large heat load on the divertor target to the below material and engineering limits is a key requirement for operation. Systems modeling is used to design entire fusion power plants and, therefore, has to be able to appropriately capture the divertor challenge. Therefore, it is important to validate these models against comprehensive SOL-divertor simulation codes and experiments. A 1-D divertor model in PROCESS was investigated, compared to the results of 2-D SONIC simulation under the detachment condition. The comparison shows how the 1-D divertor model handles the power loss mechanisms from the outboard mid-plane to the outer divertor target for a DEMO-like condition. The results show good agreement on the calculated value of the total power crossing the separatrix (
ISSN:0093-3813
1939-9375
DOI:10.1109/TPS.2020.2967859