Compressed Channel Estimation for Intelligent Reflecting Surface-Assisted Millimeter Wave Systems
In this letter, we consider channel estimation for intelligent reflecting surface (IRS)-assisted millimeter wave (mmWave) systems, where an IRS is deployed to assist the data transmission from the base station (BS) to a user. It is shown that for the purpose of joint active and passive beamforming,...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2020, Vol.27, p.905-909 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this letter, we consider channel estimation for intelligent reflecting surface (IRS)-assisted millimeter wave (mmWave) systems, where an IRS is deployed to assist the data transmission from the base station (BS) to a user. It is shown that for the purpose of joint active and passive beamforming, the knowledge of a large-size cascade channel matrix needs to be acquired. To reduce the training overhead, the inherent sparsity in mmWave channels is exploited. By utilizing properties of Katri-Rao and Kronecker products, we find a sparse representation of the cascade channel and convert cascade channel estimation into a sparse signal recovery problem. Simulation results show that our proposed method can provide an accurate channel estimate and achieve a substantial training overhead reduction. |
---|---|
ISSN: | 1070-9908 1558-2361 |
DOI: | 10.1109/LSP.2020.2998357 |