Incorporating Research Reports and Market Sentiment for Stock Excess Return Prediction: A Case of Mainland China

The prediction of stock excess returns is an important research topic for quantitative trading, and stock price prediction based on machine learning is receiving more and more attention. This article takes the data of Chinese A-shares from July 2014 to September 2017 as the research object, and prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific programming 2020, Vol.2020 (2020), p.1-7
Hauptverfasser: Song, Huilin, Huang, Xin, Peng, Diyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The prediction of stock excess returns is an important research topic for quantitative trading, and stock price prediction based on machine learning is receiving more and more attention. This article takes the data of Chinese A-shares from July 2014 to September 2017 as the research object, and proposes a method of stock excess return forecasting that combines research reports and investor sentiment. The proposed method measures individual stocks released by analysts, separates the two indicators of research report attention and rating sentiment, calculates investor sentiment based on external market factors, and uses the LSTM model to represent the time series characteristics of stocks. The results show that (1) the accuracy and F1 evaluation indicators are used, and the proposed algorithm is better than the benchmark algorithm. (2) The performance of deep learning LSTM algorithm is better than traditional machine learning algorithm SVM. (3) Investor sentiment as the initial hidden state of the model can improve the accuracy of the algorithm. (4) The attention of the split research report takes the two indicators of investor sentiment and price as the input of the model, which can effectively improve the performance of the model.
ISSN:1058-9244
1875-919X
DOI:10.1155/2020/8894757