Lower bound of decay rate for higher-order derivatives of solution to the compressible fluid models of Korteweg type
This paper concerns the lower bound decay rate of global solution for compressible Navier–Stokes–Korteweg system in three-dimensional whole space under the H 4 × H 3 framework. At first, the lower bound of decay rate for the global solution converging to constant equilibrium state (1, 0) in L 2 -nor...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2020-08, Vol.71 (4), Article 108 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper concerns the lower bound decay rate of global solution for compressible Navier–Stokes–Korteweg system in three-dimensional whole space under the
H
4
×
H
3
framework. At first, the lower bound of decay rate for the global solution converging to constant equilibrium state (1, 0) in
L
2
-norm is
(
1
+
t
)
-
3
4
if the initial data satisfy some low-frequency assumption additionally. Furthermore, we also show that the lower bound of the
k
(
k
∈
[
1
,
3
]
)
th-order spatial derivatives of solution converging to zero in
L
2
-norm is
(
1
+
t
)
-
3
+
2
k
4
. Finally, it is proved that the lower bound of decay rate for the time derivatives of density and velocity converging to zero in
L
2
-norm is
(
1
+
t
)
-
5
4
. |
---|---|
ISSN: | 0044-2275 1420-9039 |
DOI: | 10.1007/s00033-020-01330-8 |