Lower bound of decay rate for higher-order derivatives of solution to the compressible fluid models of Korteweg type

This paper concerns the lower bound decay rate of global solution for compressible Navier–Stokes–Korteweg system in three-dimensional whole space under the H 4 × H 3 framework. At first, the lower bound of decay rate for the global solution converging to constant equilibrium state (1, 0) in L 2 -nor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2020-08, Vol.71 (4), Article 108
Hauptverfasser: Gao, Jincheng, Lyu, Zeyu, Yao, Zheng-an
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper concerns the lower bound decay rate of global solution for compressible Navier–Stokes–Korteweg system in three-dimensional whole space under the H 4 × H 3 framework. At first, the lower bound of decay rate for the global solution converging to constant equilibrium state (1, 0) in L 2 -norm is ( 1 + t ) - 3 4 if the initial data satisfy some low-frequency assumption additionally. Furthermore, we also show that the lower bound of the k ( k ∈ [ 1 , 3 ] ) th-order spatial derivatives of solution converging to zero in L 2 -norm is ( 1 + t ) - 3 + 2 k 4 . Finally, it is proved that the lower bound of decay rate for the time derivatives of density and velocity converging to zero in L 2 -norm is ( 1 + t ) - 5 4 .
ISSN:0044-2275
1420-9039
DOI:10.1007/s00033-020-01330-8