Parametrized Ramsey theory of infinite block sequences of vectors
We show that the infinite-dimensional versions of Gowers' \(\mathrm{FIN}_k\) and \(\mathrm{FIN}_{\pm k}\) theorems can be parametrized by an infinite sequence of perfect subsets of \(2^\omega\). To do so, we use ultra-Ramsey theory to obtain exact and approximate versions of a result which comb...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-06 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the infinite-dimensional versions of Gowers' \(\mathrm{FIN}_k\) and \(\mathrm{FIN}_{\pm k}\) theorems can be parametrized by an infinite sequence of perfect subsets of \(2^\omega\). To do so, we use ultra-Ramsey theory to obtain exact and approximate versions of a result which combines elements from both Gowers' theorems and the Hales-Jewett theorem. As a consequence, we obtain a parametrized version of Gowers' \(c_0\) theorem. |
---|---|
ISSN: | 2331-8422 |