An exact quantum algorithm for testing Boolean functions with one uncomplemented product of two variables

In this paper, we propose a novel quantum learning algorithm, based on Younes’ quantum circuit, to find dependent variables of the Boolean function f : 0 , 1 n → 0 , 1 with one uncomplemented product of two variables. Typically, in the worst-case scenario, two dependent variables are found by evalua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum information processing 2020-07, Vol.19 (7), Article 213
1. Verfasser: Chen, Chien-Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Quantum information processing
container_volume 19
creator Chen, Chien-Yuan
description In this paper, we propose a novel quantum learning algorithm, based on Younes’ quantum circuit, to find dependent variables of the Boolean function f : 0 , 1 n → 0 , 1 with one uncomplemented product of two variables. Typically, in the worst-case scenario, two dependent variables are found by evaluating the function O n times. However, our proposed quantum algorithm only requires O log 2 n function operations in the worst-case. Additionally, we evaluate the average number to perform the function. In the average case, our algorithm requires O 1 function operations.
doi_str_mv 10.1007/s11128-020-02711-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2412166792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412166792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5ad0de9ade85f38a315e52b6575f2838638ab2eeb481a0a3d243681aa86e7ec33</originalsourceid><addsrcrecordid>eNp9UE1PwzAMjRBIjMEf4BSJcyEfS5sdxwQDaRIXOEdp645ObbIlKYN_j1mRuHGwbNnvPduPkGvObjljxV3knAudMcEwCs4zfUImXBUy41KK02ONo0Kpc3IR45YxwXOdT0i7cBQ-bZXofrAuDT213caHNr33tPGBJoipdRt6730H1tFmcFVqvYv0gBjqHVDs-H7XQQ8uQU13wdcD6vmGpoOnHza0tuwgXpKzxnYRrn7zlLw9Prwun7L1y-p5uVhnleTzlClbsxrmtgatGqmt5AqUKHNVqEZoqXPslQKgnGlumZW1mMkcS6tzKKCSckpuRl08ZD_g-Wbrh-BwpREzjm_nxVwgSoyoKvgYAzRmF9rehi_Dmfmx1IyWGrTUHC01GklyJEUEuw2EP-l_WN-kIHsM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412166792</pqid></control><display><type>article</type><title>An exact quantum algorithm for testing Boolean functions with one uncomplemented product of two variables</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Chien-Yuan</creator><creatorcontrib>Chen, Chien-Yuan</creatorcontrib><description>In this paper, we propose a novel quantum learning algorithm, based on Younes’ quantum circuit, to find dependent variables of the Boolean function f : 0 , 1 n → 0 , 1 with one uncomplemented product of two variables. Typically, in the worst-case scenario, two dependent variables are found by evaluating the function O n times. However, our proposed quantum algorithm only requires O log 2 n function operations in the worst-case. Additionally, we evaluate the average number to perform the function. In the average case, our algorithm requires O 1 function operations.</description><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-020-02711-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Boolean ; Boolean algebra ; Boolean functions ; Circuits ; Data Structures and Information Theory ; Dependent variables ; Machine learning ; Mathematical analysis ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum Information Technology ; Quantum Physics ; Spintronics</subject><ispartof>Quantum information processing, 2020-07, Vol.19 (7), Article 213</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5ad0de9ade85f38a315e52b6575f2838638ab2eeb481a0a3d243681aa86e7ec33</citedby><cites>FETCH-LOGICAL-c319t-5ad0de9ade85f38a315e52b6575f2838638ab2eeb481a0a3d243681aa86e7ec33</cites><orcidid>0000-0002-4162-9695</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11128-020-02711-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11128-020-02711-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chen, Chien-Yuan</creatorcontrib><title>An exact quantum algorithm for testing Boolean functions with one uncomplemented product of two variables</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>In this paper, we propose a novel quantum learning algorithm, based on Younes’ quantum circuit, to find dependent variables of the Boolean function f : 0 , 1 n → 0 , 1 with one uncomplemented product of two variables. Typically, in the worst-case scenario, two dependent variables are found by evaluating the function O n times. However, our proposed quantum algorithm only requires O log 2 n function operations in the worst-case. Additionally, we evaluate the average number to perform the function. In the average case, our algorithm requires O 1 function operations.</description><subject>Algorithms</subject><subject>Boolean</subject><subject>Boolean algebra</subject><subject>Boolean functions</subject><subject>Circuits</subject><subject>Data Structures and Information Theory</subject><subject>Dependent variables</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Spintronics</subject><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1PwzAMjRBIjMEf4BSJcyEfS5sdxwQDaRIXOEdp645ObbIlKYN_j1mRuHGwbNnvPduPkGvObjljxV3knAudMcEwCs4zfUImXBUy41KK02ONo0Kpc3IR45YxwXOdT0i7cBQ-bZXofrAuDT213caHNr33tPGBJoipdRt6730H1tFmcFVqvYv0gBjqHVDs-H7XQQ8uQU13wdcD6vmGpoOnHza0tuwgXpKzxnYRrn7zlLw9Prwun7L1y-p5uVhnleTzlClbsxrmtgatGqmt5AqUKHNVqEZoqXPslQKgnGlumZW1mMkcS6tzKKCSckpuRl08ZD_g-Wbrh-BwpREzjm_nxVwgSoyoKvgYAzRmF9rehi_Dmfmx1IyWGrTUHC01GklyJEUEuw2EP-l_WN-kIHsM</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Chen, Chien-Yuan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4162-9695</orcidid></search><sort><creationdate>20200701</creationdate><title>An exact quantum algorithm for testing Boolean functions with one uncomplemented product of two variables</title><author>Chen, Chien-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5ad0de9ade85f38a315e52b6575f2838638ab2eeb481a0a3d243681aa86e7ec33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Boolean</topic><topic>Boolean algebra</topic><topic>Boolean functions</topic><topic>Circuits</topic><topic>Data Structures and Information Theory</topic><topic>Dependent variables</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chien-Yuan</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chien-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An exact quantum algorithm for testing Boolean functions with one uncomplemented product of two variables</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>19</volume><issue>7</issue><artnum>213</artnum><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>In this paper, we propose a novel quantum learning algorithm, based on Younes’ quantum circuit, to find dependent variables of the Boolean function f : 0 , 1 n → 0 , 1 with one uncomplemented product of two variables. Typically, in the worst-case scenario, two dependent variables are found by evaluating the function O n times. However, our proposed quantum algorithm only requires O log 2 n function operations in the worst-case. Additionally, we evaluate the average number to perform the function. In the average case, our algorithm requires O 1 function operations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-020-02711-8</doi><orcidid>https://orcid.org/0000-0002-4162-9695</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1570-0755
ispartof Quantum information processing, 2020-07, Vol.19 (7), Article 213
issn 1570-0755
1573-1332
language eng
recordid cdi_proquest_journals_2412166792
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Boolean
Boolean algebra
Boolean functions
Circuits
Data Structures and Information Theory
Dependent variables
Machine learning
Mathematical analysis
Mathematical Physics
Physics
Physics and Astronomy
Quantum Computing
Quantum Information Technology
Quantum Physics
Spintronics
title An exact quantum algorithm for testing Boolean functions with one uncomplemented product of two variables
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20exact%20quantum%20algorithm%20for%20testing%20Boolean%20functions%20with%20one%20uncomplemented%20product%20of%20two%20variables&rft.jtitle=Quantum%20information%20processing&rft.au=Chen,%20Chien-Yuan&rft.date=2020-07-01&rft.volume=19&rft.issue=7&rft.artnum=213&rft.issn=1570-0755&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-020-02711-8&rft_dat=%3Cproquest_cross%3E2412166792%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412166792&rft_id=info:pmid/&rfr_iscdi=true