An exact quantum algorithm for testing Boolean functions with one uncomplemented product of two variables
In this paper, we propose a novel quantum learning algorithm, based on Younes’ quantum circuit, to find dependent variables of the Boolean function f : 0 , 1 n → 0 , 1 with one uncomplemented product of two variables. Typically, in the worst-case scenario, two dependent variables are found by evalua...
Gespeichert in:
Veröffentlicht in: | Quantum information processing 2020-07, Vol.19 (7), Article 213 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Quantum information processing |
container_volume | 19 |
creator | Chen, Chien-Yuan |
description | In this paper, we propose a novel quantum learning algorithm, based on Younes’ quantum circuit, to find dependent variables of the Boolean function
f
:
0
,
1
n
→
0
,
1
with one uncomplemented product of two variables. Typically, in the worst-case scenario, two dependent variables are found by evaluating the function
O
n
times. However, our proposed quantum algorithm only requires
O
log
2
n
function operations in the worst-case. Additionally, we evaluate the average number to perform the function. In the average case, our algorithm requires
O
1
function operations. |
doi_str_mv | 10.1007/s11128-020-02711-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2412166792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2412166792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5ad0de9ade85f38a315e52b6575f2838638ab2eeb481a0a3d243681aa86e7ec33</originalsourceid><addsrcrecordid>eNp9UE1PwzAMjRBIjMEf4BSJcyEfS5sdxwQDaRIXOEdp645ObbIlKYN_j1mRuHGwbNnvPduPkGvObjljxV3knAudMcEwCs4zfUImXBUy41KK02ONo0Kpc3IR45YxwXOdT0i7cBQ-bZXofrAuDT213caHNr33tPGBJoipdRt6730H1tFmcFVqvYv0gBjqHVDs-H7XQQ8uQU13wdcD6vmGpoOnHza0tuwgXpKzxnYRrn7zlLw9Prwun7L1y-p5uVhnleTzlClbsxrmtgatGqmt5AqUKHNVqEZoqXPslQKgnGlumZW1mMkcS6tzKKCSckpuRl08ZD_g-Wbrh-BwpREzjm_nxVwgSoyoKvgYAzRmF9rehi_Dmfmx1IyWGrTUHC01GklyJEUEuw2EP-l_WN-kIHsM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412166792</pqid></control><display><type>article</type><title>An exact quantum algorithm for testing Boolean functions with one uncomplemented product of two variables</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Chien-Yuan</creator><creatorcontrib>Chen, Chien-Yuan</creatorcontrib><description>In this paper, we propose a novel quantum learning algorithm, based on Younes’ quantum circuit, to find dependent variables of the Boolean function
f
:
0
,
1
n
→
0
,
1
with one uncomplemented product of two variables. Typically, in the worst-case scenario, two dependent variables are found by evaluating the function
O
n
times. However, our proposed quantum algorithm only requires
O
log
2
n
function operations in the worst-case. Additionally, we evaluate the average number to perform the function. In the average case, our algorithm requires
O
1
function operations.</description><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-020-02711-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Boolean ; Boolean algebra ; Boolean functions ; Circuits ; Data Structures and Information Theory ; Dependent variables ; Machine learning ; Mathematical analysis ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum Information Technology ; Quantum Physics ; Spintronics</subject><ispartof>Quantum information processing, 2020-07, Vol.19 (7), Article 213</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5ad0de9ade85f38a315e52b6575f2838638ab2eeb481a0a3d243681aa86e7ec33</citedby><cites>FETCH-LOGICAL-c319t-5ad0de9ade85f38a315e52b6575f2838638ab2eeb481a0a3d243681aa86e7ec33</cites><orcidid>0000-0002-4162-9695</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11128-020-02711-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11128-020-02711-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chen, Chien-Yuan</creatorcontrib><title>An exact quantum algorithm for testing Boolean functions with one uncomplemented product of two variables</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>In this paper, we propose a novel quantum learning algorithm, based on Younes’ quantum circuit, to find dependent variables of the Boolean function
f
:
0
,
1
n
→
0
,
1
with one uncomplemented product of two variables. Typically, in the worst-case scenario, two dependent variables are found by evaluating the function
O
n
times. However, our proposed quantum algorithm only requires
O
log
2
n
function operations in the worst-case. Additionally, we evaluate the average number to perform the function. In the average case, our algorithm requires
O
1
function operations.</description><subject>Algorithms</subject><subject>Boolean</subject><subject>Boolean algebra</subject><subject>Boolean functions</subject><subject>Circuits</subject><subject>Data Structures and Information Theory</subject><subject>Dependent variables</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Spintronics</subject><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1PwzAMjRBIjMEf4BSJcyEfS5sdxwQDaRIXOEdp645ObbIlKYN_j1mRuHGwbNnvPduPkGvObjljxV3knAudMcEwCs4zfUImXBUy41KK02ONo0Kpc3IR45YxwXOdT0i7cBQ-bZXofrAuDT213caHNr33tPGBJoipdRt6730H1tFmcFVqvYv0gBjqHVDs-H7XQQ8uQU13wdcD6vmGpoOnHza0tuwgXpKzxnYRrn7zlLw9Prwun7L1y-p5uVhnleTzlClbsxrmtgatGqmt5AqUKHNVqEZoqXPslQKgnGlumZW1mMkcS6tzKKCSckpuRl08ZD_g-Wbrh-BwpREzjm_nxVwgSoyoKvgYAzRmF9rehi_Dmfmx1IyWGrTUHC01GklyJEUEuw2EP-l_WN-kIHsM</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Chen, Chien-Yuan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4162-9695</orcidid></search><sort><creationdate>20200701</creationdate><title>An exact quantum algorithm for testing Boolean functions with one uncomplemented product of two variables</title><author>Chen, Chien-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5ad0de9ade85f38a315e52b6575f2838638ab2eeb481a0a3d243681aa86e7ec33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Boolean</topic><topic>Boolean algebra</topic><topic>Boolean functions</topic><topic>Circuits</topic><topic>Data Structures and Information Theory</topic><topic>Dependent variables</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chien-Yuan</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chien-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An exact quantum algorithm for testing Boolean functions with one uncomplemented product of two variables</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>19</volume><issue>7</issue><artnum>213</artnum><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>In this paper, we propose a novel quantum learning algorithm, based on Younes’ quantum circuit, to find dependent variables of the Boolean function
f
:
0
,
1
n
→
0
,
1
with one uncomplemented product of two variables. Typically, in the worst-case scenario, two dependent variables are found by evaluating the function
O
n
times. However, our proposed quantum algorithm only requires
O
log
2
n
function operations in the worst-case. Additionally, we evaluate the average number to perform the function. In the average case, our algorithm requires
O
1
function operations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-020-02711-8</doi><orcidid>https://orcid.org/0000-0002-4162-9695</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1570-0755 |
ispartof | Quantum information processing, 2020-07, Vol.19 (7), Article 213 |
issn | 1570-0755 1573-1332 |
language | eng |
recordid | cdi_proquest_journals_2412166792 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Boolean Boolean algebra Boolean functions Circuits Data Structures and Information Theory Dependent variables Machine learning Mathematical analysis Mathematical Physics Physics Physics and Astronomy Quantum Computing Quantum Information Technology Quantum Physics Spintronics |
title | An exact quantum algorithm for testing Boolean functions with one uncomplemented product of two variables |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20exact%20quantum%20algorithm%20for%20testing%20Boolean%20functions%20with%20one%20uncomplemented%20product%20of%20two%20variables&rft.jtitle=Quantum%20information%20processing&rft.au=Chen,%20Chien-Yuan&rft.date=2020-07-01&rft.volume=19&rft.issue=7&rft.artnum=213&rft.issn=1570-0755&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-020-02711-8&rft_dat=%3Cproquest_cross%3E2412166792%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412166792&rft_id=info:pmid/&rfr_iscdi=true |