An exact quantum algorithm for testing Boolean functions with one uncomplemented product of two variables
In this paper, we propose a novel quantum learning algorithm, based on Younes’ quantum circuit, to find dependent variables of the Boolean function f : 0 , 1 n → 0 , 1 with one uncomplemented product of two variables. Typically, in the worst-case scenario, two dependent variables are found by evalua...
Gespeichert in:
Veröffentlicht in: | Quantum information processing 2020-07, Vol.19 (7), Article 213 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a novel quantum learning algorithm, based on Younes’ quantum circuit, to find dependent variables of the Boolean function
f
:
0
,
1
n
→
0
,
1
with one uncomplemented product of two variables. Typically, in the worst-case scenario, two dependent variables are found by evaluating the function
O
n
times. However, our proposed quantum algorithm only requires
O
log
2
n
function operations in the worst-case. Additionally, we evaluate the average number to perform the function. In the average case, our algorithm requires
O
1
function operations. |
---|---|
ISSN: | 1570-0755 1573-1332 |
DOI: | 10.1007/s11128-020-02711-8 |