A Comprehensive Modeling as a Tool for Developing New Mini Blast Furnace Technologies Based on Biomass and Hydrogen Operation
The mini blast furnace based on biomass operation is a viable technology that neutralizes fossil carbon emissions in the production route of green hot metal. In this study, we analyze the actual mini blast furnace operation and propose new operational practices using the multiphase multicomponent mo...
Gespeichert in:
Veröffentlicht in: | Journal of sustainable metallurgy 2020-06, Vol.6 (2), p.281-293 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mini blast furnace based on biomass operation is a viable technology that neutralizes fossil carbon emissions in the production route of green hot metal. In this study, we analyze the actual mini blast furnace operation and propose new operational practices using the multiphase multicomponent modeling approach. We newly introduced additional chemical species and rate equations to account for the proposed new simulated scenarios. The model results for actual operation are favorably compared with the industrial data. Thus, new promising operational techniques based on high rates of pulverized charcoal and hot hydrogen injections are proposed and analyzed from the point of view of the process efficiency and carbon intensity. It is demonstrated that the combined operational conditions of higher pulverized charcoal and hot hydrogen injection furnish the best performance for cleaner hot metal production with the lowest carbon intensity.
Graphical Abstract |
---|---|
ISSN: | 2199-3823 2199-3831 |
DOI: | 10.1007/s40831-020-00274-7 |