McShane’s Extension Theorem Revisited

A fundamental extension theorem of McShane states that a bounded real-valued uniformly continuous function defined on a nonempty subset A of a metric space 〈 X , d 〉 can be extended to a uniformly continuous function on the entire space. In the first half of this note, we obtain McShane’s Extension...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vietnam journal of mathematics 2020-06, Vol.48 (2), p.237-246
1. Verfasser: Beer, Gerald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A fundamental extension theorem of McShane states that a bounded real-valued uniformly continuous function defined on a nonempty subset A of a metric space 〈 X , d 〉 can be extended to a uniformly continuous function on the entire space. In the first half of this note, we obtain McShane’s Extension Theorem from the simpler fact that a real-valued Lipschitz function defined on a nonempty subset of the space has a Lipschitz constant preserving extension to the entire space. In the second half of the note, we use this theorem to give an elementary proof of the equivalence of the most important characterizations of metric spaces in which the real-valued uniformly continuous functions form a ring. These characterizations of such a basic property, due to Cabello-Sánchez and separately Bouziad and Sukhacheva, are remarkably recent.
ISSN:2305-221X
2305-2228
DOI:10.1007/s10013-019-00366-2