Polymer hydrogel cross‐linked by inorganic nanoparticles for removing trace metal ions
Hydrogels for absorbing metal ions in wastewater have attracted more attentions in the environmental field especially for recent years. The removal efficiency of hydrogel adsorbents for eliminating metal ions is highly related with the effective contact between adsorbents and adsorbates. However, po...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2020-09, Vol.137 (34), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hydrogels for absorbing metal ions in wastewater have attracted more attentions in the environmental field especially for recent years. The removal efficiency of hydrogel adsorbents for eliminating metal ions is highly related with the effective contact between adsorbents and adsorbates. However, poor water absorption capacity of the hydrogel adsorbents would restrict on the expose of adsorption sites to the targeted subjects, causing undesirable removal ratio (RR) especially for metal ions at trace level. Thereby, the reported hydrogel adsorbents mainly focus on the removal of high content but not the trace level of metal ions so far. In this work, poly(acrylamide) (PAM)/poly(acrylic acid) (PAA)/Ca(OH)2 composite hydrogel is applied to adsorb trace metal ions. Swelling ratio of such PAM/PAA/Ca(OH)2 gel reaches 2,530 g/g, resulting in effective exposure of active sites and further expected RR for trace metal ions. The RRs of such adsorbent for Cu2+ (initial concentration C0 = 0.064 mg/L), Al3+ (C0 = 0.27 mg/L), Co2+ (C0 = 0.59 mg/L), Cr6+ (C0 = 0.52 mg/L), Mn2+ (C0 = 0.55 mg/L), Ni2+ (C0 = 0.59 mg/L), Zn2+ (C0 = 0.65 mg/L), Ag+ (C0 = 1.08 mg/L), and La3+ (C0 = 1.39 mg/L) are 56.6, 80.8, 41.3, 29.3, 34.6, 44.6, 55.9, 45.8, and 35.5%, respectively. This work broadens the application of hydrogel adsorbent for eliminating trace metal ions from polluted water. |
---|---|
ISSN: | 0021-8995 1097-4628 |
DOI: | 10.1002/app.49004 |