Highly electrically conductive polymer composite with a novel fiber-based segregated structure
Electrically conductive polymer composites (CPCs) have been applied extensively in many fields such as electronics, wearable sensors and antistatic agent. It is still challenging to develop CPCs with a low percolation threshold and high electrical conductivity. Here, highly electrically conductive p...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2020-09, Vol.55 (25), p.11727-11738 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electrically conductive polymer composites (CPCs) have been applied extensively in many fields such as electronics, wearable sensors and antistatic agent. It is still challenging to develop CPCs with a low percolation threshold and high electrical conductivity. Here, highly electrically conductive polystyrene (PS) composite with a fiber-based segregated structure is prepared by carbon nanotubes (CNTs) decoration onto the electrospun PS fibers, followed by hot press at a proper temperature. In the electrically conductive PS composite, the CNTs are segregated at the interface among the fiber-shaped matrix, and the one-dimensional fiber possessing the merit of a large aspect ratio, which facilitates the formation of conductive network. The percolation threshold is calculated to be 0.084 vol%, and the electrical conductivity of the CPC reaches 83.3 S/m when the concentration of the CNTs is 1.5 vol%. If the hot press temperature is much higher than the glass transition temperature of PS, the fiber-based segregated structure would be destroyed, increasing the percolation threshold while decreasing the conductivity of the composite. The fiber-based segregated structure provides a new and versatile route for the rational design and preparation of CPCs with a low percolation threshold and high conductivity. |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-020-04797-y |