Classification of Super-Modular Categories by Rank
We pursue a classification of low-rank super-modular categories parallel to that of modular categories. We classify all super-modular categories up to rank = 6, and spin modular categories up to rank = 11. In particular, we show that, up to fusion rules, there is exactly one non-split super-modular...
Gespeichert in:
Veröffentlicht in: | Algebras and representation theory 2020-06, Vol.23 (3), p.795-809 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We pursue a classification of low-rank super-modular categories parallel to that of modular categories. We classify all super-modular categories up to rank = 6, and spin modular categories up to rank = 11. In particular, we show that, up to fusion rules, there is exactly one non-split super-modular category of rank 2, 4 and 6, namely
P
S
U
(2)
4
k
+ 2
for
k
= 0,1 and 2. This classification is facilitated by adapting and extending well-known constraints from modular categories to super-modular categories, such as Verlinde and Frobenius-Schur indicator formulae. |
---|---|
ISSN: | 1386-923X 1572-9079 |
DOI: | 10.1007/s10468-019-09873-9 |