Classification of Super-Modular Categories by Rank

We pursue a classification of low-rank super-modular categories parallel to that of modular categories. We classify all super-modular categories up to rank = 6, and spin modular categories up to rank = 11. In particular, we show that, up to fusion rules, there is exactly one non-split super-modular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebras and representation theory 2020-06, Vol.23 (3), p.795-809
Hauptverfasser: Bruillard, Paul, Galindo, César, Ng, Siu-Hung, Plavnik, Julia Y., Rowell, Eric C., Wang, Zhenghan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We pursue a classification of low-rank super-modular categories parallel to that of modular categories. We classify all super-modular categories up to rank = 6, and spin modular categories up to rank = 11. In particular, we show that, up to fusion rules, there is exactly one non-split super-modular category of rank 2, 4 and 6, namely P S U (2) 4 k + 2 for k = 0,1 and 2. This classification is facilitated by adapting and extending well-known constraints from modular categories to super-modular categories, such as Verlinde and Frobenius-Schur indicator formulae.
ISSN:1386-923X
1572-9079
DOI:10.1007/s10468-019-09873-9