Model and estimation risk in credit risk stress tests

This paper deals with stress tests for credit risk and shows how exploiting the discretion when setting up and implementing a model can drive the results of a quantitative stress test for default probabilities. For this purpose, we employ several variations of a CreditPortfolioView-style model using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of quantitative finance and accounting 2020-07, Vol.55 (1), p.163-199
Hauptverfasser: Grundke, Peter, Pliszka, Kamil, Tuchscherer, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with stress tests for credit risk and shows how exploiting the discretion when setting up and implementing a model can drive the results of a quantitative stress test for default probabilities. For this purpose, we employ several variations of a CreditPortfolioView-style model using US data ranging from 2004 to 2016. We show that seemingly only slightly differing specifications can lead to entirely different stress test results—in relative and absolute terms. That said, our findings reveal that the conversion of a shock (i.e., stress event) increases the (non-stress) default probability by 20–80%—depending on the stress test model selected. Interestingly, forecasts for non-stress default probabilities are less exposed to model and estimation risk. In addition, the risk horizon over which the stress default probabilities are forecasted and whether we consider mean stress default probabilities or quantiles seem to play only a minor role for the dispersion between the results of the different model specifications. Our findings emphasize the importance of extensive robustness checks for model-based credit risk stress tests.
ISSN:0924-865X
1573-7179
DOI:10.1007/s11156-019-00840-5