Self-sustained elastoinertial Tollmien–Schlichting waves

Direct simulations of two-dimensional plane channel flow of a viscoelastic fluid at Reynolds number $Re=3000$ reveal the existence of a family of attractors whose structure closely resembles the linear Tollmien–Schlichting (TS) mode, and in particular exhibits strongly localized stress fluctuations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2020-08, Vol.897, Article A3
Hauptverfasser: Shekar, Ashwin, McMullen, Ryan M., McKeon, Beverley J., Graham, Michael D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Direct simulations of two-dimensional plane channel flow of a viscoelastic fluid at Reynolds number $Re=3000$ reveal the existence of a family of attractors whose structure closely resembles the linear Tollmien–Schlichting (TS) mode, and in particular exhibits strongly localized stress fluctuations at the critical layer position of the TS mode. At the parameter values chosen, this solution branch is not connected to the nonlinear TS solution branch found for Newtonian flow, and thus represents a solution family that is nonlinearly self-sustained by viscoelasticity. The ratio between stress and velocity fluctuations is in quantitative agreement for the attractor and the linear TS mode, and increases strongly with Weissenberg number, $\mathit{Wi}$ . For the latter, there is a transition in the scaling of this ratio as $\mathit{Wi}$ increases, and the $\mathit{Wi}$ at which the nonlinear solution family comes into existence is just above this transition. Finally, evidence indicates that this branch is connected through an unstable solution branch to two-dimensional elastoinertial turbulence (EIT). These results suggest that, in the parameter range considered here, the bypass transition leading to EIT is mediated by nonlinear amplification and self-sustenance of perturbations that excite the TS mode.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2020.372