Thermal properties of wood-based panels: thermal conductivity identification with inverse modeling

Accuracy and effectiveness of predicting the heat transfer in wood-based panels is increasingly important for describing their behavior, especially for varying environmental conditions. To model the heat transfer in wood-based panels it is essential to input credible data on their thermal properties...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of wood and wood products 2016-07, Vol.74 (4), p.577-584
Hauptverfasser: Czajkowski, Łukasz, Olek, Wiesław, Weres, Jerzy, Guzenda, Ryszard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accuracy and effectiveness of predicting the heat transfer in wood-based panels is increasingly important for describing their behavior, especially for varying environmental conditions. To model the heat transfer in wood-based panels it is essential to input credible data on their thermal properties. Therefore, proper estimation of the specific heat and thermal conductivity is fundamental. A finite element inverse analysis procedure was developed. The procedure was designed in such a way that anisotropy of the thermal conductivity was accounted for. For all analyzed wood-based panels, in-plane thermal conductivity was significantly higher compared to the transverse one, and it was recommended to consider the anisotropy, and to use both in-plane and transverse thermal conductivity for modeling heat transfer. The effect of temperature on thermal conductivity was not clearly manifested. The thermal conductivity values were decreasing or increasing with temperature. In some cases this influence was practically insignificant (i.e. OSB), while for low density fiberboard the effect of temperature on thermal conductivity was the highest. The identification procedure was validated and its credibility was assessed. It was shown that data on thermal properties available in the literature should not be recommended to model the heat transfer.
ISSN:0018-3768
1436-736X
DOI:10.1007/s00107-016-1021-6