Influence of Two Cross-Flaws Geometry on the Strength and Crack Coalescence of Rock-Like Material Specimens under Uniaxial Compression

Abstract Cross-flaws are very common in natural rocks. To date, the understanding of the failure process of rocks with cross-flaws is very limited. In this research, we study the influence of the cross-flaws geometry on the rock strength and coalescence modes with rock-like specimens. In this work,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of geomechanics 2020-08, Vol.20 (8)
Hauptverfasser: Zhang, B, Li, Y, Yang, X. Y, Li, S. C, Liu, B, Xu, Z. H, Pei, Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Cross-flaws are very common in natural rocks. To date, the understanding of the failure process of rocks with cross-flaws is very limited. In this research, we study the influence of the cross-flaws geometry on the rock strength and coalescence modes with rock-like specimens. In this work, three groups of specimens with pre-existing cross-flaws are investigated: two aligned cross-flaws, two step cross-flaws, and two collinear primary flaws. The crack propagation and strength of specimens containing two parallel flaws are also studied to compare the results with those of specimens with cross-flaws. The results demonstrate that the cross-flaw geometry influences the rock bridge coalescence patterns in rock-like specimens. Specimens with two aligned cross-flaws and two step cross-flaws coalesce with tensile cracks in the rock bridge areas, while specimens with two collinear primary flaws coalesce with shear cracks. Specimens containing two cross-flaws may have a higher uniaxial compressive strength than specimens containing two parallel flaws, and the number of specimens with a higher uniaxial compressive strength is influenced by the cross-flaws geometry in the different groups. The cross-flaws geometry influences the strength of the specimens. In this research, specimens in the group containing two aligned cross-flaws have the highest mean uniaxial compressive strength, and specimens in the group with two step cross-flaws have the lowest strength.
ISSN:1532-3641
1943-5622
DOI:10.1061/(ASCE)GM.1943-5622.0001757