Influence of Two Cross-Flaws Geometry on the Strength and Crack Coalescence of Rock-Like Material Specimens under Uniaxial Compression
Abstract Cross-flaws are very common in natural rocks. To date, the understanding of the failure process of rocks with cross-flaws is very limited. In this research, we study the influence of the cross-flaws geometry on the rock strength and coalescence modes with rock-like specimens. In this work,...
Gespeichert in:
Veröffentlicht in: | International journal of geomechanics 2020-08, Vol.20 (8) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Cross-flaws are very common in natural rocks. To date, the understanding of the failure process of rocks with cross-flaws is very limited. In this research, we study the influence of the cross-flaws geometry on the rock strength and coalescence modes with rock-like specimens. In this work, three groups of specimens with pre-existing cross-flaws are investigated: two aligned cross-flaws, two step cross-flaws, and two collinear primary flaws. The crack propagation and strength of specimens containing two parallel flaws are also studied to compare the results with those of specimens with cross-flaws. The results demonstrate that the cross-flaw geometry influences the rock bridge coalescence patterns in rock-like specimens. Specimens with two aligned cross-flaws and two step cross-flaws coalesce with tensile cracks in the rock bridge areas, while specimens with two collinear primary flaws coalesce with shear cracks. Specimens containing two cross-flaws may have a higher uniaxial compressive strength than specimens containing two parallel flaws, and the number of specimens with a higher uniaxial compressive strength is influenced by the cross-flaws geometry in the different groups. The cross-flaws geometry influences the strength of the specimens. In this research, specimens in the group containing two aligned cross-flaws have the highest mean uniaxial compressive strength, and specimens in the group with two step cross-flaws have the lowest strength. |
---|---|
ISSN: | 1532-3641 1943-5622 |
DOI: | 10.1061/(ASCE)GM.1943-5622.0001757 |