Uniform \(l^2\)-decoupling in \(\mathbb R^2\) for Polynomials
For each positive integer \(d\), we prove a uniform \(l^2\)-decoupling inequality for the collection of all polynomials phases of degree at most \(d\). Our result is intimately related to \cite{MR4078083}, but we use a different partition that is determined by the geometry of each individual phase f...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-03 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Yang, Tongou |
description | For each positive integer \(d\), we prove a uniform \(l^2\)-decoupling inequality for the collection of all polynomials phases of degree at most \(d\). Our result is intimately related to \cite{MR4078083}, but we use a different partition that is determined by the geometry of each individual phase function. |
doi_str_mv | 10.48550/arxiv.2006.03135 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2410535102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2410535102</sourcerecordid><originalsourceid>FETCH-proquest_journals_24105351023</originalsourceid><addsrcrecordid>eNqNikELgjAYQEcQJOUP6DboUgft2zdnXjpF0TGibpJoaU3mZjOj_n0G_YBOD957hIwZ-EEkBMxT-5JPHwFCHzjjokcc5Jx5UYA4IG7TlACA4QKF4A5ZHrUsjK1oPFUnjGfeJT-btlZSX6nUnY2r9HHLMrr_VtqtdGfUW5tKpqoZkX7RIXd_HJLJZn1Ybb3amnubN4-kNK3VXUowYCC4YID8v-sDe4M8fQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410535102</pqid></control><display><type>article</type><title>Uniform \(l^2\)-decoupling in \(\mathbb R^2\) for Polynomials</title><source>Free E- Journals</source><creator>Yang, Tongou</creator><creatorcontrib>Yang, Tongou</creatorcontrib><description>For each positive integer \(d\), we prove a uniform \(l^2\)-decoupling inequality for the collection of all polynomials phases of degree at most \(d\). Our result is intimately related to \cite{MR4078083}, but we use a different partition that is determined by the geometry of each individual phase function.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2006.03135</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Decoupling ; Polynomials</subject><ispartof>arXiv.org, 2021-03</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,27925</link.rule.ids></links><search><creatorcontrib>Yang, Tongou</creatorcontrib><title>Uniform \(l^2\)-decoupling in \(\mathbb R^2\) for Polynomials</title><title>arXiv.org</title><description>For each positive integer \(d\), we prove a uniform \(l^2\)-decoupling inequality for the collection of all polynomials phases of degree at most \(d\). Our result is intimately related to \cite{MR4078083}, but we use a different partition that is determined by the geometry of each individual phase function.</description><subject>Decoupling</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNikELgjAYQEcQJOUP6DboUgft2zdnXjpF0TGibpJoaU3mZjOj_n0G_YBOD957hIwZ-EEkBMxT-5JPHwFCHzjjokcc5Jx5UYA4IG7TlACA4QKF4A5ZHrUsjK1oPFUnjGfeJT-btlZSX6nUnY2r9HHLMrr_VtqtdGfUW5tKpqoZkX7RIXd_HJLJZn1Ybb3amnubN4-kNK3VXUowYCC4YID8v-sDe4M8fQ</recordid><startdate>20210319</startdate><enddate>20210319</enddate><creator>Yang, Tongou</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210319</creationdate><title>Uniform \(l^2\)-decoupling in \(\mathbb R^2\) for Polynomials</title><author>Yang, Tongou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24105351023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Decoupling</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Tongou</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Tongou</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Uniform \(l^2\)-decoupling in \(\mathbb R^2\) for Polynomials</atitle><jtitle>arXiv.org</jtitle><date>2021-03-19</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>For each positive integer \(d\), we prove a uniform \(l^2\)-decoupling inequality for the collection of all polynomials phases of degree at most \(d\). Our result is intimately related to \cite{MR4078083}, but we use a different partition that is determined by the geometry of each individual phase function.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2006.03135</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2410535102 |
source | Free E- Journals |
subjects | Decoupling Polynomials |
title | Uniform \(l^2\)-decoupling in \(\mathbb R^2\) for Polynomials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A44%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Uniform%20%5C(l%5E2%5C)-decoupling%20in%20%5C(%5Cmathbb%20R%5E2%5C)%20for%20Polynomials&rft.jtitle=arXiv.org&rft.au=Yang,%20Tongou&rft.date=2021-03-19&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2006.03135&rft_dat=%3Cproquest%3E2410535102%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2410535102&rft_id=info:pmid/&rfr_iscdi=true |