Uniform \(l^2\)-decoupling in \(\mathbb R^2\) for Polynomials
For each positive integer \(d\), we prove a uniform \(l^2\)-decoupling inequality for the collection of all polynomials phases of degree at most \(d\). Our result is intimately related to \cite{MR4078083}, but we use a different partition that is determined by the geometry of each individual phase f...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-03 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For each positive integer \(d\), we prove a uniform \(l^2\)-decoupling inequality for the collection of all polynomials phases of degree at most \(d\). Our result is intimately related to \cite{MR4078083}, but we use a different partition that is determined by the geometry of each individual phase function. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2006.03135 |