Uniform \(l^2\)-decoupling in \(\mathbb R^2\) for Polynomials

For each positive integer \(d\), we prove a uniform \(l^2\)-decoupling inequality for the collection of all polynomials phases of degree at most \(d\). Our result is intimately related to \cite{MR4078083}, but we use a different partition that is determined by the geometry of each individual phase f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-03
1. Verfasser: Yang, Tongou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For each positive integer \(d\), we prove a uniform \(l^2\)-decoupling inequality for the collection of all polynomials phases of degree at most \(d\). Our result is intimately related to \cite{MR4078083}, but we use a different partition that is determined by the geometry of each individual phase function.
ISSN:2331-8422
DOI:10.48550/arxiv.2006.03135