A Strategy for Simultaneous Xylose Utilization and Enhancement of Cellulase Enzyme Production by Trichoderma reesei Cultivated on Liquid Hydrolysate Followed by Induction with Feeding of Solid Sugarcane Bagasse
Production of cellulase enzyme by Trichoderma reesei using cheap lignocellulosic material sugarcane bagasse was studied. Enzyme production from lignocellulosic biomass required pretreatment to decrease the cellulose crystallinity where inhibitors are released in hydrolysate. Strategies for solid bag...
Gespeichert in:
Veröffentlicht in: | Waste and biomass valorization 2020-07, Vol.11 (7), p.3151-3160 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Production of cellulase enzyme by
Trichoderma reesei
using cheap lignocellulosic material sugarcane bagasse was studied. Enzyme production from lignocellulosic biomass required pretreatment to decrease the cellulose crystallinity where inhibitors are released in hydrolysate. Strategies for solid bagasse feeding and pH shifting during fermentation have been developed for cellulase production enhancement by
T. reesei
NCIM 1186. To improve the cellulase production along with xylose utilization from the hydrolysate various feeding approach of pretreated solid bagasse in liquid hydrolysate grown culture has been investigated. This
T. reesei
has shown the capability of complete consumption of acetic acid, furfural, 5-hydroxymethyl, furfural and formic acid along with enzyme production. The maximum cellulase production of 1.5 U/ml CMCase and 1.01 U/ml FPase was obtained using a solid bagasse strategy developed here where
T. reesei
was grown in sugar rich hydrolysate followed by early feeding of pretreated solid bagasse along with pH shifting strategy in a stirred tank bioreactor. This production was almost fivefolds increment of both FPase and CMCase compared to culture grown in whole slurry mixture. |
---|---|
ISSN: | 1877-2641 1877-265X |
DOI: | 10.1007/s12649-019-00645-6 |