A Weakly Supervised Method for Mud Detection in Ores Based on Deep Active Learning

Automatically detecting mud in bauxite ores is important and valuable, with which we can improve productivity and reduce pollution. However, distinguishing mud and ores in a real scene is challenging for their similarity in shape, color, and texture. Moreover, training a deep learning model needs a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-10
Hauptverfasser: Cai, Zuowei, Luan, Xidao, Li, Fangmin, Huang, Zhijian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Automatically detecting mud in bauxite ores is important and valuable, with which we can improve productivity and reduce pollution. However, distinguishing mud and ores in a real scene is challenging for their similarity in shape, color, and texture. Moreover, training a deep learning model needs a large amount of exactly labeled samples, which is expensive and time consuming. Aiming at the challenging problem, this paper proposed a novel weakly supervised method based on deep active learning (AL), named YOLO-AL. The method uses the YOLO-v3 model as the basic detector, which is initialized with the pretrained weights on the MS COCO dataset. Then, an AL framework-embedded YOLO-v3 model is constructed. In the AL process, it iteratively fine-tunes the last few layers of the YOLO-v3 model with the most valuable samples, which is selected by a Less Confident (LC) strategy. Experimental results show that the proposed method can effectively detect mud in ores. More importantly, the proposed method can obviously reduce the labeled samples without decreasing the detection accuracy.
ISSN:1024-123X
1563-5147
DOI:10.1155/2020/3510313