Fabrication and Characterisations of Rhizophora spp. Particleboards Bonded with Corn Starch as Water Equivalent Phantoms for Diagnostic Photon Energy Ranges
Studies had been carried out to look for new phantom materials in medical physics that can provide better dose accuracy in comparison to water. This study focused on the fabrication and characterisations and of particleboards made of Rhizophora spp. as phantom for low and diagnostic photon energies....
Gespeichert in:
Veröffentlicht in: | Journal of physical science 2019-01, Vol.30 (3), p.131-155 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Studies had been carried out to look for new phantom materials in medical physics that can provide better dose accuracy in comparison to water. This study focused on the fabrication and characterisations and of particleboards made of Rhizophora spp. as phantom for low and diagnostic photon energies. Rhizophora spp. particleboards were fabricated at different particle size ranges of 104-210 pm, 74-104 pm and < 74 pm. Corn starch was used as adhesive at 5% and 10% percentage levels as well as the binderless particleboards. All particleboards were fabricated with density similar to water at 1.0 g cm-3. The physical and mechanical properties of the particleboards were evaluated based on the Japanese Industrial Standards (JIS A 5908:2003). The elemental compositions and the effective atomic number of corn starch bonded Rhizophora spp. were determined based on the energy dispersive X-ray analysis (EDXA). The mass attenuation coefficients were measured by using X-ray fluorescence (XRF) photons between 16.59 keV and 25.26 keV. The computed tomography (CT) numbers, electron density and density profiles were investigated by using the CT scanner and compared to water. The Rhizophora spp. particleboard with highest percentage level of corn starch (10%) and smallest particle size ( |
---|---|
ISSN: | 1675-3402 2180-4230 |
DOI: | 10.21315/jps2019.30.3.9 |