Uryson Width and Volume

We give a short proof of a theorem of Guth relating volume of balls and Uryson width. The same approach applies to Hausdorff content implying a recent result of Liokumovich–Lishak–Nabutovsky–Rotman. We show also that for any C > 0 there is a Riemannian metric g on a 3-sphere such that vol ( S 3 ,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometric and functional analysis 2020-04, Vol.30 (2), p.574-587
1. Verfasser: Papasoglu, Panos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 587
container_issue 2
container_start_page 574
container_title Geometric and functional analysis
container_volume 30
creator Papasoglu, Panos
description We give a short proof of a theorem of Guth relating volume of balls and Uryson width. The same approach applies to Hausdorff content implying a recent result of Liokumovich–Lishak–Nabutovsky–Rotman. We show also that for any C > 0 there is a Riemannian metric g on a 3-sphere such that vol ( S 3 , g ) = 1 and for any map f : S 3 → R 2 there is some x ∈ R 2 for which diam ( f - 1 ( x ) ) > C , answering a question of Guth.
doi_str_mv 10.1007/s00039-020-00533-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2409875551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409875551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-a4ca3c59de8d71909b6d3e62ffcb4c05fc600adb9a04a9b0cff3e086d32f99ac3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKtnwdOC5-hkJ7O7OUrxCwperHoL2XxoS7tbk-6h_97oCt48zQw87zvwMHYh4EoA1NcJAFBxKIEDECKnAzYRMp-NquEw7yAqLiW-HbOTlFYZJ5I0YeeLuE99V7wu3e6jMJ0rXvr1sPGn7CiYdfJnv3PKFne3z7MHPn-6f5zdzLnFCnfcSGvQknK-cbVQoNrKoa_KEGwrLVCwFYBxrTIgjWrBhoAemgyVQSljccoux95t7D8Hn3Z61Q-xyy91KUE1NRGJTJUjZWOfUvRBb-NyY-JeC9DfAvQoQGcB-keAphzCMZQy3L37-Ff9T-oL5lpcjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2409875551</pqid></control><display><type>article</type><title>Uryson Width and Volume</title><source>SpringerLink Journals - AutoHoldings</source><creator>Papasoglu, Panos</creator><creatorcontrib>Papasoglu, Panos</creatorcontrib><description>We give a short proof of a theorem of Guth relating volume of balls and Uryson width. The same approach applies to Hausdorff content implying a recent result of Liokumovich–Lishak–Nabutovsky–Rotman. We show also that for any C &gt; 0 there is a Riemannian metric g on a 3-sphere such that vol ( S 3 , g ) = 1 and for any map f : S 3 → R 2 there is some x ∈ R 2 for which diam ( f - 1 ( x ) ) &gt; C , answering a question of Guth.</description><identifier>ISSN: 1016-443X</identifier><identifier>EISSN: 1420-8970</identifier><identifier>DOI: 10.1007/s00039-020-00533-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Mathematics ; Mathematics and Statistics</subject><ispartof>Geometric and functional analysis, 2020-04, Vol.30 (2), p.574-587</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-a4ca3c59de8d71909b6d3e62ffcb4c05fc600adb9a04a9b0cff3e086d32f99ac3</citedby><cites>FETCH-LOGICAL-c363t-a4ca3c59de8d71909b6d3e62ffcb4c05fc600adb9a04a9b0cff3e086d32f99ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00039-020-00533-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00039-020-00533-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Papasoglu, Panos</creatorcontrib><title>Uryson Width and Volume</title><title>Geometric and functional analysis</title><addtitle>Geom. Funct. Anal</addtitle><description>We give a short proof of a theorem of Guth relating volume of balls and Uryson width. The same approach applies to Hausdorff content implying a recent result of Liokumovich–Lishak–Nabutovsky–Rotman. We show also that for any C &gt; 0 there is a Riemannian metric g on a 3-sphere such that vol ( S 3 , g ) = 1 and for any map f : S 3 → R 2 there is some x ∈ R 2 for which diam ( f - 1 ( x ) ) &gt; C , answering a question of Guth.</description><subject>Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1016-443X</issn><issn>1420-8970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LAzEQhoMoWKtnwdOC5-hkJ7O7OUrxCwperHoL2XxoS7tbk-6h_97oCt48zQw87zvwMHYh4EoA1NcJAFBxKIEDECKnAzYRMp-NquEw7yAqLiW-HbOTlFYZJ5I0YeeLuE99V7wu3e6jMJ0rXvr1sPGn7CiYdfJnv3PKFne3z7MHPn-6f5zdzLnFCnfcSGvQknK-cbVQoNrKoa_KEGwrLVCwFYBxrTIgjWrBhoAemgyVQSljccoux95t7D8Hn3Z61Q-xyy91KUE1NRGJTJUjZWOfUvRBb-NyY-JeC9DfAvQoQGcB-keAphzCMZQy3L37-Ff9T-oL5lpcjA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Papasoglu, Panos</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200401</creationdate><title>Uryson Width and Volume</title><author>Papasoglu, Panos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-a4ca3c59de8d71909b6d3e62ffcb4c05fc600adb9a04a9b0cff3e086d32f99ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papasoglu, Panos</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Geometric and functional analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papasoglu, Panos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uryson Width and Volume</atitle><jtitle>Geometric and functional analysis</jtitle><stitle>Geom. Funct. Anal</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>30</volume><issue>2</issue><spage>574</spage><epage>587</epage><pages>574-587</pages><issn>1016-443X</issn><eissn>1420-8970</eissn><abstract>We give a short proof of a theorem of Guth relating volume of balls and Uryson width. The same approach applies to Hausdorff content implying a recent result of Liokumovich–Lishak–Nabutovsky–Rotman. We show also that for any C &gt; 0 there is a Riemannian metric g on a 3-sphere such that vol ( S 3 , g ) = 1 and for any map f : S 3 → R 2 there is some x ∈ R 2 for which diam ( f - 1 ( x ) ) &gt; C , answering a question of Guth.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00039-020-00533-5</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1016-443X
ispartof Geometric and functional analysis, 2020-04, Vol.30 (2), p.574-587
issn 1016-443X
1420-8970
language eng
recordid cdi_proquest_journals_2409875551
source SpringerLink Journals - AutoHoldings
subjects Analysis
Mathematics
Mathematics and Statistics
title Uryson Width and Volume
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A46%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uryson%20Width%20and%20Volume&rft.jtitle=Geometric%20and%20functional%20analysis&rft.au=Papasoglu,%20Panos&rft.date=2020-04-01&rft.volume=30&rft.issue=2&rft.spage=574&rft.epage=587&rft.pages=574-587&rft.issn=1016-443X&rft.eissn=1420-8970&rft_id=info:doi/10.1007/s00039-020-00533-5&rft_dat=%3Cproquest_cross%3E2409875551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2409875551&rft_id=info:pmid/&rfr_iscdi=true