Uryson Width and Volume

We give a short proof of a theorem of Guth relating volume of balls and Uryson width. The same approach applies to Hausdorff content implying a recent result of Liokumovich–Lishak–Nabutovsky–Rotman. We show also that for any C > 0 there is a Riemannian metric g on a 3-sphere such that vol ( S 3 ,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometric and functional analysis 2020-04, Vol.30 (2), p.574-587
1. Verfasser: Papasoglu, Panos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a short proof of a theorem of Guth relating volume of balls and Uryson width. The same approach applies to Hausdorff content implying a recent result of Liokumovich–Lishak–Nabutovsky–Rotman. We show also that for any C > 0 there is a Riemannian metric g on a 3-sphere such that vol ( S 3 , g ) = 1 and for any map f : S 3 → R 2 there is some x ∈ R 2 for which diam ( f - 1 ( x ) ) > C , answering a question of Guth.
ISSN:1016-443X
1420-8970
DOI:10.1007/s00039-020-00533-5