Uryson Width and Volume
We give a short proof of a theorem of Guth relating volume of balls and Uryson width. The same approach applies to Hausdorff content implying a recent result of Liokumovich–Lishak–Nabutovsky–Rotman. We show also that for any C > 0 there is a Riemannian metric g on a 3-sphere such that vol ( S 3 ,...
Gespeichert in:
Veröffentlicht in: | Geometric and functional analysis 2020-04, Vol.30 (2), p.574-587 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a short proof of a theorem of Guth relating volume of balls and Uryson width. The same approach applies to Hausdorff content implying a recent result of Liokumovich–Lishak–Nabutovsky–Rotman. We show also that for any
C
>
0
there is a Riemannian metric
g
on a 3-sphere such that
vol
(
S
3
,
g
)
=
1
and for any map
f
:
S
3
→
R
2
there is some
x
∈
R
2
for which
diam
(
f
-
1
(
x
)
)
>
C
, answering a question of Guth. |
---|---|
ISSN: | 1016-443X 1420-8970 |
DOI: | 10.1007/s00039-020-00533-5 |