Finite Groups With Few Relative Tensor or Exterior Degrees
A peculiar structure is present in a finite group G , when D ( G ) = { d ( H , G ) | H is a subgroup of G } is small enough (here d ( H , G ) denotes the relative commutativity degree). Recent contributions show that G has elementary abelian quotients, when | D ( G ) | ≤ 4 . We introduce a similar...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2020-07, Vol.43 (4), p.3201-3219 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A peculiar structure is present in a finite group
G
, when
D
(
G
)
=
{
d
(
H
,
G
)
|
H
is
a
subgroup
of
G
}
is small enough (here
d
(
H
,
G
) denotes the relative commutativity degree). Recent contributions show that
G
has elementary abelian quotients, when
|
D
(
G
)
|
≤
4
. We introduce a similar problem for the relative exterior degree
d
∧
(
H
,
G
)
and for the relative tensor degree
d
⊗
(
H
,
G
)
. Theorems of structure are shown when
G
has a small number of relative tensor (or exterior) degrees. Among other things, we give new estimations for the gap
d
∧
(
H
,
G
)
-
d
⊗
(
H
,
G
)
and for the arithmetic average
(
d
∧
(
H
,
G
)
+
d
⊗
(
H
,
G
)
)
/
2
. |
---|---|
ISSN: | 0126-6705 2180-4206 |
DOI: | 10.1007/s40840-019-00861-2 |