Spectral Gap Property for Random Dynamics on the Real Line and Multifractal Analysis of Generalised Takagi Functions
We consider the random iteration of finitely many expanding C 1 + ϵ diffeomorphisms on the real line without a common fixed point. We derive the spectral gap property of the associated transition operator acting on spaces of Hölder continuous functions. As an application we introduce generalised Tak...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2020-07, Vol.377 (1), p.1-36 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the random iteration of finitely many expanding
C
1
+
ϵ
diffeomorphisms on the real line without a common fixed point. We derive the spectral gap property of the associated transition operator acting on spaces of Hölder continuous functions. As an application we introduce generalised Takagi functions on the real line and we perform a complete multifractal analysis of the pointwise Hölder exponents of these functions. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-020-03766-5 |