Spectral Gap Property for Random Dynamics on the Real Line and Multifractal Analysis of Generalised Takagi Functions

We consider the random iteration of finitely many expanding C 1 + ϵ diffeomorphisms on the real line without a common fixed point. We derive the spectral gap property of the associated transition operator acting on spaces of Hölder continuous functions. As an application we introduce generalised Tak...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2020-07, Vol.377 (1), p.1-36
Hauptverfasser: Jaerisch, Johannes, Sumi, Hiroki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the random iteration of finitely many expanding C 1 + ϵ diffeomorphisms on the real line without a common fixed point. We derive the spectral gap property of the associated transition operator acting on spaces of Hölder continuous functions. As an application we introduce generalised Takagi functions on the real line and we perform a complete multifractal analysis of the pointwise Hölder exponents of these functions.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-020-03766-5