Convergence of the two‐fluid compressible Navier–Stokes–Poisson system to the incompressible Euler equations

In this paper, we consider the combined quasi‐neutral and inviscid limits of the two‐fluid compressible Navier–Stokes–Poisson system in the unbounded domain R2×T with the ill‐prepared initial data. We prove that the weak solutions of the compressible Navier–Stokes–Poisson system converge to the stro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2020-07, Vol.43 (10), p.6262-6275
Hauptverfasser: Kwon, Young‐Sam, Li, Fucai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the combined quasi‐neutral and inviscid limits of the two‐fluid compressible Navier–Stokes–Poisson system in the unbounded domain R2×T with the ill‐prepared initial data. We prove that the weak solutions of the compressible Navier–Stokes–Poisson system converge to the strong solution of the incompressible Euler equation as long as the latter exists. Moreover, the convergence rates are also obtained.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.6369