Coloring \((P_5, \text{gem})\)-free graphs with \(\Delta -1\) colors
The Borodin-Kostochka Conjecture states that for a graph \(G\), if \(\Delta(G) \geq 9\) and \(\omega(G) \leq \Delta(G)-1\), then \(\chi(G)\leq\Delta(G) -1\). We prove the Borodin-Kostochka Conjecture for \((P_5, \text{gem})\)-free graphs, i.e., graphs with no induced \(P_5\) and no induced \(K_1\vee...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-06 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Borodin-Kostochka Conjecture states that for a graph \(G\), if \(\Delta(G) \geq 9\) and \(\omega(G) \leq \Delta(G)-1\), then \(\chi(G)\leq\Delta(G) -1\). We prove the Borodin-Kostochka Conjecture for \((P_5, \text{gem})\)-free graphs, i.e., graphs with no induced \(P_5\) and no induced \(K_1\vee P_4\). |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2006.02015 |