A polynomial-exponential variation of Furstenberg’s theorem
Furstenberg’s $\times 2\times 3$ theorem asserts that the double sequence $(2^{m}3^{n}\unicode[STIX]{x1D6FC})_{m,n\geq 1}$ is dense modulo one for every irrational $\unicode[STIX]{x1D6FC}$ . The same holds with $2$ and $3$ replaced by any two multiplicatively independent integers. Here we obtain the...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2020-07, Vol.40 (7), p.1729-1737 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Furstenberg’s
$\times 2\times 3$
theorem asserts that the double sequence
$(2^{m}3^{n}\unicode[STIX]{x1D6FC})_{m,n\geq 1}$
is dense modulo one for every irrational
$\unicode[STIX]{x1D6FC}$
. The same holds with
$2$
and
$3$
replaced by any two multiplicatively independent integers. Here we obtain the same result for the sequences
$((\begin{smallmatrix}m+n\\ d\end{smallmatrix})a^{m}b^{n}\unicode[STIX]{x1D6FC})_{m,n\geq 1}$
for any non-negative integer
$d$
and irrational
$\unicode[STIX]{x1D6FC}$
, and for the sequence
$(P(m)a^{m}b^{n})_{m,n\geq 1}$
, where
$P$
is any polynomial with at least one irrational coefficient. Similarly to Furstenberg’s theorem, both results are obtained by considering appropriate dynamical systems. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2018.132 |