A polynomial-exponential variation of Furstenberg’s theorem

Furstenberg’s $\times 2\times 3$ theorem asserts that the double sequence $(2^{m}3^{n}\unicode[STIX]{x1D6FC})_{m,n\geq 1}$ is dense modulo one for every irrational $\unicode[STIX]{x1D6FC}$ . The same holds with $2$ and $3$ replaced by any two multiplicatively independent integers. Here we obtain the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2020-07, Vol.40 (7), p.1729-1737
Hauptverfasser: ABRAMOFF, M., BEREND, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Furstenberg’s $\times 2\times 3$ theorem asserts that the double sequence $(2^{m}3^{n}\unicode[STIX]{x1D6FC})_{m,n\geq 1}$ is dense modulo one for every irrational $\unicode[STIX]{x1D6FC}$ . The same holds with $2$ and $3$ replaced by any two multiplicatively independent integers. Here we obtain the same result for the sequences $((\begin{smallmatrix}m+n\\ d\end{smallmatrix})a^{m}b^{n}\unicode[STIX]{x1D6FC})_{m,n\geq 1}$ for any non-negative integer $d$ and irrational $\unicode[STIX]{x1D6FC}$ , and for the sequence $(P(m)a^{m}b^{n})_{m,n\geq 1}$ , where $P$ is any polynomial with at least one irrational coefficient. Similarly to Furstenberg’s theorem, both results are obtained by considering appropriate dynamical systems.
ISSN:0143-3857
1469-4417
DOI:10.1017/etds.2018.132